# 11.2 Density  (Page 2/3)

 Page 2 / 3

## Calculating the mass of a reservoir from its volume

A reservoir has a surface area of $\text{50}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}$ and an average depth of 40.0 m. What mass of water is held behind the dam? (See [link] for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

Strategy

We can calculate the volume $V$ of the reservoir from its dimensions, and find the density of water $\rho$ in [link] . Then the mass $m$ can be found from the definition of density

$\rho =\frac{m}{V}.$

Solution

Solving equation $\rho =m/V$ for $m$ gives $m=\rho V$ .

The volume $V$ of the reservoir is its surface area $A$ times its average depth $h$ :

$\begin{array}{lll}V& =& \text{Ah}=\left(\text{50.0}\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}\right)\left(\text{40.0}\phantom{\rule{0.25em}{0ex}}\text{m}\right)\\ & =& \left[\left(\text{50.0 k}{\text{m}}^{2}\right){\left(\frac{{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m}}{1\phantom{\rule{0.25em}{0ex}}\text{km}}\right)}^{2}\right]\left(\text{40.0 m}\right)=2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\end{array}$

The density of water $\rho$ from [link] is $1\text{.}\text{000}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . Substituting $V$ and $\rho$ into the expression for mass gives

$\begin{array}{lll}m& =& \left(1\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)\\ & =& 2.00×{\text{10}}^{\text{12}}\phantom{\rule{0.25em}{0ex}}\text{kg.}\end{array}$

Discussion

A large reservoir contains a very large mass of water. In this example, the weight of the water in the reservoir is $\text{mg}=1\text{.}\text{96}×{\text{10}}^{\text{13}}\phantom{\rule{0.25em}{0ex}}\text{N}$ , where $g$ is the acceleration due to the Earth’s gravity (about $9\text{.}\text{80}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ ). It is reasonable to ask whether the dam must supply a force equal to this tremendous weight. The answer is no. As we shall see in the following sections, the force the dam must supply can be much smaller than the weight of the water it holds back.

## Section summary

• Density is the mass per unit volume of a substance or object. In equation form, density is defined as
$\rho =\frac{m}{V}.$
• The SI unit of density is ${\text{kg/m}}^{3}$ .

## Conceptual questions

Approximately how does the density of air vary with altitude?

Give an example in which density is used to identify the substance composing an object. Would information in addition to average density be needed to identify the substances in an object composed of more than one material?

[link] shows a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain your answer.

## Problems&Exercises

Gold is sold by the troy ounce (31.103 g). What is the volume of 1 troy ounce of pure gold?

$1\text{.}\text{610}\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$

Mercury is commonly supplied in flasks containing 34.5 kg (about 76 lb). What is the volume in liters of this much mercury?

(a) What is the mass of a deep breath of air having a volume of 2.00 L? (b) Discuss the effect taking such a breath has on your body’s volume and density.

(a) 2.58 g

(b) The volume of your body increases by the volume of air you inhale. The average density of your body decreases when you take a deep breath, because the density of air is substantially smaller than the average density of the body before you took the deep breath.

A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces $\text{89}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$ of water? (Note that the accuracy and practical applications of this technique are more limited than a variety of others that are based on Archimedes’ principle.)

$2\text{.}\text{70}\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

Suppose you have a coffee mug with a circular cross section and vertical sides (uniform radius). What is its inside radius if it holds 375 g of coffee when filled to a depth of 7.50 cm? Assume coffee has the same density as water.

(a) A rectangular gasoline tank can hold 50.0 kg of gasoline when full. What is the depth of the tank if it is 0.500-m wide by 0.900-m long? (b) Discuss whether this gas tank has a reasonable volume for a passenger car.

(a) 0.163 m

(b) Equivalent to 19.4 gallons, which is reasonable

A trash compactor can reduce the volume of its contents to 0.350 their original value. Neglecting the mass of air expelled, by what factor is the density of the rubbish increased?

A 2.50-kg steel gasoline can holds 20.0 L of gasoline when full. What is the average density of the full gas can, taking into account the volume occupied by steel as well as by gasoline?

$7\text{.}9×{\text{10}}^{2}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0ex}{0ex}}{\text{kg/m}}^{3}$

What is the density of 18.0-karat gold that is a mixture of 18 parts gold, 5 parts silver, and 1 part copper? (These values are parts by mass, not volume.) Assume that this is a simple mixture having an average density equal to the weighted densities of its constituents.

$\text{15}\text{.}6\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

There is relatively little empty space between atoms in solids and liquids, so that the average density of an atom is about the same as matter on a macroscopic scale—approximately ${\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . The nucleus of an atom has a radius about ${\text{10}}^{-5}$ that of the atom and contains nearly all the mass of the entire atom. (a) What is the approximate density of a nucleus? (b) One remnant of a supernova, called a neutron star, can have the density of a nucleus. What would be the radius of a neutron star with a mass 10 times that of our Sun (the radius of the Sun is $7×{\text{10}}^{8}\phantom{\rule{0.25em}{0ex}}\text{m}$ )?

(a) ${\text{10}}^{\text{18}}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$

(b) $2×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{m}$

what is a wave
wave means. A field of study
aondohemba
what are Atoms
aondohemba
is the movement back and front or up and down
sani
how ?
aondohemba
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
lots
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
conist
an atom is the smallest unit( particle) of an element that bares it's chemical properties
conist
what is electromagnetic induction?
conist
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
How do you convert 0.0045kgcmÂ³ to the si unit?
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
list it out I wanna know
Cristal
what the meaning of continuum
What state of matter is fire
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
how can we define vector
mahmud
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
Hanzo
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
conist
what is the relativity of physics
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
hello
King
Explain dopplers effect
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat
what does fluorine do?
strengthen and whiten teeth.
Gia