<< Chapter < Page Chapter >> Page >
  • Derive the equation for rotational work.
  • Calculate rotational kinetic energy.
  • Demonstrate the Law of Conservation of Energy.

In this module, we will learn about work and energy associated with rotational motion. [link] shows a worker using an electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from the pole. The stone continues to turn even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly, the motor had to work to get the stone spinning. This work went into heat, light, sound, vibration, and considerable rotational kinetic energy    .

The figure shows a mechanic cutting metal with a metal grinder. The sparks are emerging from the point of contact and jumping off tangentially from the cutter.
The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light, sound, and vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion and Gravitation for translational motion, and we can build on that knowledge when considering work done in rotational motion. The simplest rotational situation is one in which the net force is exerted perpendicular to the radius of a disk (as shown in [link] ) and remains perpendicular as the disk starts to rotate. The force is parallel to the displacement, and so the net work done is the product of the force times the arc length traveled:

net W = ( net F ) Δ s . size 12{"net "W= left ("net "F right ) cdot Δs} {}

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by r size 12{r} {} , and gather terms:

net W = ( r net F ) Δ s r . size 12{"net"W= left (r" net "F right ) { {Δs} over {r} } } {}

We recognize that r net F = net τ size 12{r" net "F=" net "τ} {} and Δ s / r = θ size 12{Δs/r=θ} {} , so that

net W = net τ θ . size 12{"net "W= left ("net "τ right )θ} {}

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation net W = net τ θ size 12{"net "W= left ("net "τ right )θ} {} is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first step is to note that net τ = size 12{"net "W=Iα} {} , so that

net W = I αθ . size 12{"net "W=I ital "αθ"} {}
The figure shows a circular disc of radius r. A net force F is applied perpendicular to the radius, rotating the disc in an anti-clockwise direction and producing a displacement equal to delta S, in a direction parallel to the direction of the force applied. The angle covered is theta.
The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus net F Δ s size 12{ left ("net "F right ) cdot Δs} {} . The net work goes into rotational kinetic energy.

Making connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first presented in Uniform Circular Motion and Gravitation .

Now, we solve one of the rotational kinematics equations for αθ size 12{ ital "αθ"} {} . We start with the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Next, we solve for αθ size 12{ ital "αθ"} {} :

αθ = ω 2 ω 0 2 2 . size 12{ ital "αθ"= { {ω rSup { size 8{2} } - ω rSub { size 8{0} rSup { size 8{2} } } } over {2} } } {}

Substituting this into the equation for net W size 12{W} {} and gathering terms yields

net W = 1 2 2 1 2 I ω 0 2 . size 12{"net "W= { {1} over {2} } Iω rSup { size 8{2} } - { {1} over {2} } Iω rSub { size 8{0} rSup { size 8{2} } } } {}

This equation is the work-energy theorem    for rotational motion only. As you may recall, net work changes the kinetic energy of a system. Through an analogy with translational motion, we define the term 1 2 2 size 12{ left ( { {1} over {2} } right )Iω rSup { size 8{2} } } {} to be rotational kinetic energy     KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} for an object with a moment of inertia I size 12{I} {} and an angular velocity ω size 12{ω} {} :

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask