<< Chapter < Page Chapter >> Page >

This appendix is broken into several tables.

  • [link] , Important Constants
  • [link] , Submicroscopic Masses
  • [link] , Solar System Data
  • [link] , Metric Prefixes for Powers of Ten and Their Symbols
  • [link] , The Greek Alphabet
  • [link] , SI units
  • [link] , Selected British Units
  • [link] , Other Units
  • [link] , Useful Formulae
Important constants Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
Symbol Meaning Best Value Approximate Value
c size 12{c} {} Speed of light in vacuum 2 . 99792458 × 10 8 m / s size 12{2 "." "99792458" times "10" rSup { size 8{8} } ` {m} slash {s} } {} 3 . 00 × 10 8 m / s size 12{3 "." "00" times "10" rSup { size 8{8} } ` {m} slash {s} } {}
G size 12{G} {} Gravitational constant 6 . 67408 ( 31 ) × 10 11 N m 2 / kg 2 size 12{6 "." "67384" \( "80" \) times "10" rSup { size 8{ - "11"} } ` {N cdot m rSup { size 8{2} } } slash {"kg" rSup { size 8{2} } } } {} 6 . 67 × 10 11 N m 2 / kg 2 size 12{6 "." "67" times "10" rSup { size 8{ - "11"} } ` {N cdot m rSup { size 8{2} } } slash {"kg" rSup { size 8{2} } } } {}
N A size 12{N rSub { size 8{A} } } {} Avogadro’s number 6 . 02214129 ( 27 ) × 10 23 size 12{6 "." "02214129" \( "27" \) times "10" rSup { size 8{"23"} } } {} 6 . 02 × 10 23 size 12{6 "." "02" times "10" rSup { size 8{"23"} } } {}
k size 12{k} {} Boltzmann’s constant 1 . 3806488 ( 13 ) × 10 23 J / K size 12{1 "." "3806488" \( "13" \) times "10" rSup { size 8{ - "23"} } ` {J} slash {K} } {} 1 . 38 × 10 23 J / K size 12{1 "." "38" times "10" rSup { size 8{ - "23"} } ` {J} slash {K} } {}
R size 12{R} {} Gas constant 8 . 3144621 ( 75 ) J / mol K size 12{8 "." "3144621" \( "75" \) ` {J} slash {"mol" cdot K} } {} 8 . 31 J / mol K = 1 . 99 cal / mol K = 0 . 0821 atm L / mol K size 12{8 "." "31"` {J} slash {"mol" cdot K=1 "." "99"` {"cal"} slash {"mol" cdot K=0 "." "0821"` {"atm" cdot L} slash {"mol" cdot K} } } } {}
σ size 12{σ} {} Stefan-Boltzmann constant 5 . 670373 ( 21 ) × 10 8 W / m 2 K size 12{5 "." "670373" \( "21" \) times "10" rSup { size 8{ - 8} } ` {W} slash {m rSup { size 8{2} } cdot K} } {} 5 . 67 × 10 8 W / m 2 K size 12{5 "." "67" times "10" rSup { size 8{ - 8} } ` {W} slash {m rSup { size 8{2} } cdot K} } {}
k size 12{k} {} Coulomb force constant 8 . 987551788 . . . × 10 9 N m 2 / C 2 size 12{8 "." "987551788" "." "." "." `` times "10" rSup { size 8{9} } ` {N cdot m rSup { size 8{2} } } slash {C rSup { size 8{2} } } } {} 8.99 × 10 9 N m 2 / C 2 size 12{9 times "10" rSup { size 8{9} } ` {N cdot m rSup { size 8{2} } } slash {C rSup { size 8{2} } } } {}
q e size 12{q rSub { size 8{e} } } {} Charge on electron 1 . 602176565 ( 35 ) × 10 19 C size 12{ - 1 "." "602176565" \( "35" \) times "10" rSup { size 8{ - "19"} } `C} {} 1 . 60 × 10 19 C size 12{ - 1 "." "60" times "10" rSup { size 8{ - "19"} } `C} {}
ε 0 size 12{ε rSub { size 8{0} } } {} Permittivity of free space 8 . 854187817 . . . × 10 12 C 2 / N m 2 size 12{8 "." "854187817" "." "." "." `` times "10" rSup { size 8{ - "12"} } ` {C rSup { size 8{2} } } slash {N cdot m rSup { size 8{2} } } } {} 8 . 85 × 10 12 C 2 / N m 2 size 12{8 "." "85" times "10" rSup { size 8{ - "12"} } ` {C rSup { size 8{2} } } slash {N cdot m rSup { size 8{2} } } } {}
μ 0 size 12{μ rSub { size 8{0} } } {} Permeability of free space × 10 7 T m / A size 12{4π times "10" rSup { size 8{ - 7} } ` {T cdot m} slash {A} } {} 1 . 26 × 10 6 T m / A size 12{1 "." "26" times "10" rSup { size 8{ - 6} } ` {T cdot m} slash {A} } {}
h size 12{h} {} Planck’s constant 6 . 62606957 ( 29 ) × 10 34 J s size 12{6 "." "62606957" \( "29" \) times "10" rSup { size 8{ - "34"} } `J cdot s} {} 6 . 63 × 10 34 J s size 12{6 "." "63" times "10" rSup { size 8{ - "34"} } `J cdot s} {}
Submicroscopic masses Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
Symbol Meaning Best Value Approximate Value
m e size 12{m rSub { size 8{e} } } {} Electron mass 9 . 10938291 ( 40 ) × 10 31 kg size 12{9 "." "10938291" \( "40" \) times "10" rSup { size 8{ - "31"} } `"kg"} {} 9 . 11 × 10 31 kg size 12{9 "." "11" times "10" rSup { size 8{ - "31"} } `"kg"} {}
m p size 12{m rSub { size 8{p} } } {} Proton mass 1 . 672621777 ( 74 ) × 10 27 kg size 12{1 "." "672621777" \( "74" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6726 × 10 27 kg size 12{1 "." "6726" times "10" rSup { size 8{ - "27"} } `"kg"} {}
m n size 12{m rSub { size 8{n} } } {} Neutron mass 1 . 674927351 ( 74 ) × 10 27 kg size 12{1 "." "674927351" \( "74" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6749 × 10 27 kg size 12{1 "." "6749" times "10" rSup { size 8{ - "27"} } `"kg"} {}
u size 12{u} {} Atomic mass unit 1 . 660538921 ( 73 ) × 10 27 kg size 12{1 "." "660538921" \( "73" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6605 × 10 27 kg size 12{1 "." "6605" times "10" rSup { size 8{ - "27"} } `"kg"} {}
Solar system data
Sun mass 1 . 99 × 10 30 kg size 12{1 "." "99" times "10" rSup { size 8{"30"} } `"kg"} {}
average radius 6 . 96 × 10 8 m size 12{6 "." "96" times "10" rSup { size 8{8} } `m} {}
Earth-sun distance (average) 1 . 496 × 10 11 m size 12{1 "." "496" times "10" rSup { size 8{"11"} } " m"} {}
Earth mass 5 . 9736 × 10 24 kg size 12{5 "." "9736" times "10" rSup { size 8{"24"} } `"kg"} {}
average radius 6 . 376 × 10 6 m size 12{6 "." "376" times "10" rSup { size 8{6} } `m} {} {}
orbital period 3 . 16 × 10 7 s size 12{3 "." "16" times "10" rSup { size 8{7} } " s "} {}
Moon mass 7 . 35 × 10 22 kg size 12{7 "." "35" times "10" rSup { size 8{"22"} } `"kg"} {}
average radius 1 . 74 × 10 6 m size 12{1 "." "74" times "10" rSup { size 8{6} } `m} {}
orbital period (average) 2 . 36 × 10 6 s size 12{2 "." "36" times "10" rSup { size 8{6} } " s"} {}
Earth-moon distance (average) 3 . 84 × 10 8 m size 12{3 "." "84" times "10" rSup { size 8{8} } " m"} {}
Metric prefixes for powers of ten and their symbols
Prefix Symbol Value Prefix Symbol Value
tera T 10 12 size 12{"10" rSup { size 8{"12"} } } {} deci d 10 1 size 12{"10" rSup { size 8{ - 1} } } {}
giga G 10 9 size 12{"10" rSup { size 8{9} } } {} centi c 10 2 size 12{"10" rSup { size 8{ - 2} } } {}
mega M 10 6 size 12{"10" rSup { size 8{6} } } {} milli m 10 3 size 12{"10" rSup { size 8{ - 3} } } {}
kilo k 10 3 size 12{"10" rSup { size 8{3} } } {} micro μ size 12{μ} {} 10 6 size 12{"10" rSup { size 8{ - 6} } } {}
hecto h 10 2 size 12{"10" rSup { size 8{2} } } {} nano n 10 9 size 12{"10" rSup { size 8{ - 9} } } {}
deka da 10 1 size 12{"10" rSup { size 8{1} } } {} pico p 10 12 size 12{"10" rSup { size 8{ - "12"} } } {}
10 0 ( = 1 ) size 12{"10" rSup { size 8{0} } \( `=1` \) } {} femto f 10 15 size 12{"10" rSup { size 8{ - "15"} } } {}
The greek alphabet
Alpha Α size 12{Α} {} α size 12{α} {} Eta Η size 12{Η} {} η size 12{η} {} Nu Ν size 12{Ν} {} ν size 12{ν} {} Tau Τ size 12{Τ} {} τ size 12{τ} {}
Beta Β size 12{Β} {} β size 12{β} {} Theta Θ size 12{Θ} {} θ size 12{θ} {} Xi Ξ size 12{Ξ} {} ξ size 12{ξ} {} Upsilon Υ size 12{Υ} {} υ size 12{υ} {}
Gamma Γ size 12{Γ} {} γ size 12{γ} {} Iota Ι size 12{Ι} {} ι size 12{ι} {} Omicron Ο size 12{Ο} {} ο size 12{ο} {} Phi Φ size 12{Φ} {} ϕ size 12{ϕ} {}
Delta Δ size 12{Δ} {} δ size 12{δ} {} Kappa Κ size 12{Κ} {} κ size 12{κ} {} Pi Π size 12{Π} {} π size 12{π} {} Chi Χ size 12{Χ} {} χ size 12{χ} {}
Epsilon Ε size 12{Ε} {} ε size 12{ε} {} Lambda Λ size 12{Λ} {} λ size 12{λ} {} Rho Ρ size 12{Ρ} {} ρ size 12{ρ} {} Psi Ψ size 12{Ψ} {} ψ size 12{ψ} {}
Zeta Ζ size 12{Ζ} {} ζ size 12{ζ} {} Mu Μ size 12{Μ} {} μ size 12{μ} {} Sigma Σ size 12{Σ} {} σ size 12{σ} {} Omega Ω size 12{ %OMEGA } {} ω size 12{ω} {}
Si units
Entity Abbreviation Name
Fundamental units Length m meter
Mass kg kilogram
Time s second
Current A ampere
Supplementary unit Angle rad radian
Derived units Force N = kg m / s 2 size 12{N="kg" cdot {m} slash {s rSup { size 8{2} } } } {} newton
Energy J = kg m 2 / s 2 size 12{J="kg" cdot {m rSup { size 8{2} } } slash {s rSup { size 8{2} } } } {} joule
Power W = J / s size 12{W= {J} slash {s} } {} watt
Pressure Pa = N / m 2 size 12{"Pa"= {N} slash {m rSup { size 8{2} } } } {} pascal
Frequency Hz = 1 / s size 12{"Hz"= {1} slash {s} } {} hertz
Electronic potential V = J / C size 12{V= {J} slash {C} } {} volt
Capacitance F = C / V size 12{F= {C} slash {V} } {} farad
Charge C = s A size 12{C=s cdot A} {} coulomb
Resistance Ω = V / A size 12{ %OMEGA = {V} slash {A} } {} ohm
Magnetic field T = N / A m size 12{T= {N} slash { left (A cdot m right )} } {} tesla
Nuclear decay rate Bq = 1 / s size 12{"Bq"= {1} slash {s} } {} becquerel
Selected british units
Length 1 inch ( in . ) = 2 . 54 cm ( exactly ) size 12{1" inch " \( "in" "." \) =2 "." "54"" cm " \( "exactly" \) } {}
1 foot ( ft ) = 0 . 3048 m size 12{1" foot " \( "ft" \) =0 "." "3048"" m"} {}
1 mile ( mi ) = 1 . 609 km size 12{1" mile " \( "mi" \) =1 "." "609"" km"} {}
Force 1 pound ( lb ) = 4 . 448 N size 12{1" pound " \( "lb" \) =4 "." "448"" N"} {}
Energy 1 British thermal unit ( Btu ) = 1 . 055 × 10 3 J size 12{1" British thermal unit " \( "Btu" \) =1 "." "055" times "10" rSup { size 8{3} } " J"} {}
Power 1 horsepower ( hp ) = 746 W size 12{1" horsepower " \( "hp" \) ="746"" W"} {}
Pressure 1 lb / in 2 = 6 . 895 × 10 3 Pa size 12{1 {"lb"} slash {"in" rSup { size 8{2} } } =6 "." "895" times "10" rSup { size 8{3} } " Pa"} {}
Other units
Length 1 light year ( ly ) = 9 . 46 × 10 15 m size 12{1`" light"`" year"` \( "ly" \) ` =9 "." "46" times "10" rSup { size 8{"15"} } " m"} {}
1 astronomical unit ( au ) = 1 . 50 × 10 11 m size 12{1`" astronomical"`" unit"` \( "au" \) ` =1 "." "50" times "10" rSup { size 8{"11"} } " m"} {}
1 nautical mile = 1 . 852 km size 12{1`" nautical"`" mile"` =1 "." "852"`" km"} {}
1 angstrom ( Å ) = 10 10 m size 12{1`" angstrom"` \( Å \) ` ="10" rSup { size 8{ - "10"} } " m"} {}
Area 1 acre ( ac ) = 4 . 05 × 10 3 m 2 size 12{1`" acre"` \( "ac" \) ` =4 "." "05" times "10" rSup { size 8{3} } " m" rSup { size 8{2} } } {}
1 square foot ( ft 2 ) = 9 . 29 × 10 2 m 2 size 12{1`"square"`"foot"` \( "ft" rSup { size 8{2} } \) ` =9 "." "29" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } } {}
1 barn ( b ) = 10 28 m 2 size 12{1`" barn"` \( b \) ` ="10" rSup { size 8{ - "28"} } " m" rSup { size 8{2} } } {}
Volume 1 liter ( L ) = 10 3 m 3 size 12{1`" liter"` \( L \) ` ="10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } } {}
1 U.S. gallon ( gal ) = 3 . 785 × 10 3 m 3 size 12{1`" U" "." S "." `" gallon"` \( "gal" \) ` =3 "." "785" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } } {}
Mass 1 solar mass = 1 . 99 × 10 30 kg size 12{1`" solar"`" mass"` =1 "." "99" times "10" rSup { size 8{"30"} } " kg"} {}
1 metric ton = 10 3 kg size 12{1`" metric"`" ton"` ="10" rSup { size 8{3} } " kg"} {}
1 atomic mass unit ( u ) = 1 . 6605 × 10 27 kg size 12{1`" atomic"`" mass"`" unit"`` \( u \) ` =1 "." "6605" times "10" rSup { size 8{ - "27"} } " kg"} {}
Time 1 year ( y ) = 3 . 16 × 10 7 s size 12{1`" year"` \( y \) ` =3 "." "16" times "10" rSup { size 8{7} } " s"} {}
1 day ( d ) = 86 , 400 s size 12{1`" day"` \( d \) ` ="86","400"`" s"} {}
Speed 1 mile per hour ( mph ) = 1 . 609 km / h size 12{1`" mile"`"per"`"hour"` \( "mph" \) `=1 "." "609"` {"km"} slash {h} } {}
1 nautical mile per hour ( naut ) = 1 . 852 km / h size 12{1`" nautical"`"mile"`"per"`"hour"` \( "naut" \) `=1 "." "852"` {"km"} slash {h} } {}
Angle 1 degree ( ° ) = 1 . 745 × 10 2 rad size 12{1`" degree"` \( ° \) ` =1 "." "745" times "10" rSup { size 8{ - 2} } " rad"} {}
1 minute of arc ( ' ) = 1 / 60 degree size 12{1`" minute"`"of"`"arc"` { { \( }} sup { ' } \) `= {1} slash {"60"} `" degree"} {}
1 second of arc ( '' ) = 1 / 60 minute of arc size 12{1`" second"`"of"`"arc"` { { \( }} sup { '' } \) `= {1} slash {"60"`} " minute of arc"} {}
1 grad = 1 . 571 × 10 2 rad size 12{1`" grad"` =1 "." "571" times "10" rSup { size 8{ - 2} } " rad"} {}
Energy 1 kiloton TNT ( kT ) = 4 . 2 × 10 12 J size 12{1`" kiloton"`" TNT"` \( "kT" \) ` =4 "." 2 times "10" rSup { size 8{"12"} } " J"} {}
1 kilowatt hour ( kW h ) = 3 . 60 × 10 6 J size 12{1`" kilowatt"`" hour"` \( "kW" cdot h \) ` =3 "." "60" times "10" rSup { size 8{6} } " J"} {}
1 food calorie ( kcal ) = 4186 J size 12{1`" food"`"calorie"` \( "kcal" \) `="4186"`" J"} {}
1 calorie ( cal ) = 4 . 186 J size 12{1`" calorie"` \( "cal" \) `=4 "." "186"`" J"} {}
1 electron volt ( eV ) = 1 . 60 × 10 19 J size 12{1`" electron"`" volt"` \( "eV" \) ` =1 "." "60" times "10" rSup { size 8{ - "19"} } " J"} {}
Pressure 1 atmosphere ( atm ) = 1 . 013 × 10 5 Pa size 12{1`" atmosphere"` \( "atm" \) ` =1 "." "013" times "10" rSup { size 8{5} } " Pa"} {}
1 millimeter of mercury ( mm Hg ) = 133 . 3 Pa size 12{1`" millimeter"`"of"`"mercury"` \( "mm"`"Hg" \) `="133" "." 3`" Pa"} {}
1 torricelli ( torr ) = 1 mm Hg = 133 . 3 Pa size 12{1`" torricelli"` \( "torr" \) `=1`" mm"``"Hg "="133" "." 3`" Pa"} {}
Nuclear decay rate 1 curie ( Ci ) = 3 . 70 × 10 10 Bq size 12{1`" curie"` \( "Ci" \) ` =3 "." "70" times "10" rSup { size 8{"10"} } " Bq"} {}
Useful formulae
Circumference of a circle with radius r size 12{r} {} or diameter d size 12{d} {} C = 2 πr = πd size 12{C=2πr=πd} {}
Area of a circle with radius r size 12{r} {} or diameter d size 12{d} {} A = πr 2 = πd 2 / 4 size 12{A=πr rSup { size 8{2} } = {πd rSup { size 8{2} } } slash {4} } {}
Area of a sphere with radius r size 12{r} {} A = 4 πr 2 size 12{A=4πr rSup { size 8{2} } } {}
Volume of a sphere with radius r size 12{r} {} V = 4 / 3 πr 3 size 12{V= left ( {4} slash {3} right ) left (πr rSup { size 8{3} } right )} {}

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask