Page 1 / 3
This course is a short series of lectures on Introductory Statistics. Topics covered are listed in the Table of Contents. The notes were prepared by EwaPaszek and Marek Kimmel. The development of this course has been supported by NSF 0203396 grant.

Tests of statistical hypotheses are a very important topic, let introduce it through an illustration.

Suppose a manufacturer of a certain printed circuit observes that about p =0.05 of the circuits fails. An engineer and statistician working together suggest some changes that might improve the design of the product. To test this new procedure, it was agreed that n =100 circuits would be produced using the proposed method and the checked. Let Y equal the number of these 200 circuits that fail. Clearly, if the number of failures, Y , is such that Y /200 is about to 0.05, then it seems that the new procedure has not resulted in an improvement. On the other hand, If Y is small so that Y /200 is about 0.01 or 0.02, we might believe that the new method is better than the old one. On the other hand, if Y /200 is 0.08 or 0.09, the proposed method has perhaps caused a greater proportion of failures. What is needed is to establish a formal rule that tells when to accept the new procedure as an improvement. For example, we could accept the new procedure as an improvement if $Y\le 5$ of $Y/n\le 0.025$ . We do note, however, that the probability of the failure could still be about p =0.05 even with the new procedure, and yet we could observe 5 of fewer failures in n =200 trials.

That is, we would accept the new method as being an improvement when, in fact, it was not. This decision is a mistake which we call a Type I error . On the other hand, the new procedure might actually improve the product so that p is much smaller, say p =0.02, and yet we could observe y =7 failures so that y /200=0.035. Thus we would not accept the new method as resulting in an improvement when in fact it had. This decision would also be a mistake which we call a Type II error .

If it we believe these trials, using the new procedure, are independent and have about the same probability of failure on each trial, then Y is binomial $b\left(200,p\right)$ . We wish to make a statistical inference about p using the unbiased $\stackrel{^}{p}=Y/200$ . We could also construct a confidence interval, say one that has 95% confidence, obtaining $\stackrel{^}{p}±1.96\sqrt{\frac{\stackrel{^}{p}\left(1-\stackrel{^}{p}\right)}{200}.}$

This inference is very appropriate and many statisticians simply do this. If the limits of this confidence interval contain 0.05, they would not say the new procedure is necessarily better, al least until more data are taken. If, on the other hand, the upper limit of this confidence interval is less than 0.05, then they fell 95% confident that the true p is now less than 0.05. Here, in this illustration, we are testing whether or not the probability of failure has or has not decreased from 0.05 when the new manufacturing procedure is used.

The no change hypothesis, ${H}_{0}:p=0.05$ , is called the null hypothesis . Since ${H}_{0}:p=0.05$ completely specifies the distribution it is called a simple hypothesis ; thus ${H}_{0}:p=0.05$ is a simple null hypothesis .

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!