<< Chapter < Page Chapter >> Page >

Probability density function.

If x i MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaa@3800@ is a continuous random variable, the concept of a probability distribution is replaced by a probility density function (pdf). A function, f ( x ) , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGSaaaaa@3A0A@ is a pdf for the continuous random variable x if and only if (1) f ( x ) 0 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHLjYScaaIWaaaaa@3BDA@ for - < x < ; MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaac2cacqGHEisPcqGH8aapcaWG4bGaeyipaWJaeyOhIuQaai4oaaaa@3D40@ (2) f ( x ) d x = 1 ; MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakiabg2da9iaaigdacaGG7aaaaa@4402@ and (3) f ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395A@ has a finite number of discontinuities. By definition Pr ( a x b ) = a b f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGaccfacaGGYbWaaeWaaeaacaWGHbGaeyizImQaamiEaiabgsMiJkaadkgaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaac6caaaa@4AC1@ Example 5 offers an example of a pfd.

Probability distribution function for a continuous random variable.

Graph of a pdf.
The red line is the pdf for the random variable x . The shaded in area under the pdf is equal to the probability that x falls between a and b . The total area under the pdf is equal to 1.

Cumulative distribution function (cdf).

The cumulative distribution function is given by F ( x ) = Pr ( X x ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpciGGqbGaaiOCamaabmaabaGaamiwaiabgsMiJkaadIhaaiaawIcacaGLPaaacaGGUaaaaa@41D6@ For a discrete variable the cdf is F ( x w ) = i = 1 w f ( x i ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhadaWgaaWcbaGaam4DaaqabaaakiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaam4DaaqdcqGHris5aOGaaiOlaaaa@46B0@ For a continuous distribution, the cdf is F ( x ) = x f ( w ) d w . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadEhaaiaawIcacaGLPaaacaWGKbGaam4Daiaac6caaSqaaiabgkHiTiabg6HiLcqaaiaadIhaa0Gaey4kIipaaaa@460B@ Example 6 illustrates the calculation of the cumulative distribution function for a continuous random variable.

The cumulative distributon function.

Let f ( x ) = x 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaaIYaaaaaaa@3C46@ be the pdf for the random variable x defined between 0 and 1. The cumulative distribution function for any a is F ( a ) = 0 a x 2 d x = 1 3 x 3 | 0 a = a 3 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadggaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaWaaqGaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGccaGLiWoadaqhaaWcbaGaaGimaaqaaiaadggaaaGccqGH9aqpdaWcaaqaaiaadggadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaaaaiaac6caaaa@4E5D@

Mathematical expectation

Mathematical expectation for a function.

The mathematical expectation of the function g ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395B@ is E ( g ( x ) ) = x g ( x ) f ( x ) d x MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpdaWdrbqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaadIhaaeqaniabgUIiYdaaaa@48C4@ where x is a random variable. Example 7 shows the calculation of the expected value of a function.

Expected value calculation.

Let f ( x ) = x a MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaaaa@3C70@ be a pdf for 0 x 1 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaaGymaaaa@3BC5@ and a > 0. MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH+aGpcaaIWaGaaiOlaaaa@3943@ Let g ( x ) = x 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaaiOlaaaa@3D04@ We can calculate E [ g ( x ) ] = 0 1 ( x 3 ) x a d x = 0 1 x a + 3 d x = 1 a + 4 x a + 4 | 0 1 = 1 a + 4 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaiodaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaI0aaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaisdaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaI0aaaaiaac6caaaa@6368@

The mean of a distribution.

The population mean, μ , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaacYcaaaa@384F@ of a random variable, x, with a pdf of f ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395A@ is defined to be the expected value of x: μ = E ( x ) = x f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9iaadweadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadIhacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacaGGUaaaleqabeqdcqGHRiI8aaaa@45FC@ Example 8 illustrates the calculation of the population mean.

Calculation of the population mean.

Assume we have the same pdf used in Example 7. The population mean for this distribution is μ = E [ x ] = 0 1 ( x ) x a d x = 0 1 x a + 1 d x = 1 a + 2 x a + 2 | 0 1 = 1 a + 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9iaadweadaWadaqaaiaadIhaaiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaikdaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaiaac6caaaa@62B3@

The variance of a distribution.

The population variance, σ 2 , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiaacYcaaaa@394F@ of a distribution is σ 2 = E [ ( x μ ) 2 ] . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiabg2da9iaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiaac6caaaa@432F@ Example 9 shows a shortcut way to calculate the population variance.

Calculation of the population variance using the expected value operator.

Define the variance operator, V , to be:

V ( x ) = E [ ( x μ ) 2 ] . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaamWaaeaadaqadaqaaiaadIhacqGHsislcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaacaGGUaaaaa@43DA@

Then,

E [ ( x μ ) 2 ] = ( x μ ) 2 f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9maapeaabaWaaeWaaeaacaWG4bGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aOGaaiOlaaaa@4DF1@

Squaring the term in the integral gives: ( x 2 2 μ x + μ 2 ) f ( x ) d x = E ( x 2 2 μ x + μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeY7aTjaadIhacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqabeqaniabgUIiYdGccqGH9aqpcaWGfbWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeY7aTjaadIhacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaGGUaaaaa@5687@

Expand of the left-hand-side of this equality:

x 2 f ( x ) d x 2 μ x f ( x ) d x + μ 2 f ( x ) d x = E ( x 2 ) E ( 2 μ x ) + E ( μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabgkHiTmaapeaabaGaaGOmaiabeY7aTjaadIhacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRaWkaSqabeqaniabgUIiYdGcdaWdbaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaWGfbWaaeWaaeaacaaIYaGaeqiVd0MaamiEaaGaayjkaiaawMcaaiabgUcaRiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac6caaaa@685C@

Thus, we have established that:

E [ ( x μ ) 2 ] = E ( x 2 ) E ( 2 μ x ) + E ( μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaWGfbWaaeWaaeaacaaIYaGaeqiVd0MaamiEaaGaayjkaiaawMcaaiabgUcaRiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac6caaaa@5149@

Evaluating the last two terms gives

E ( 2 μ x ) = 2 μ x f ( x ) d x = 2 μ x d x = 2 μ 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiaaikdacqaH8oqBcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaaIYaGaeqiVd0MaamiEaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da9iaaikdacqaH8oqBdaWdbaqaaiaadIhaaSqabeqaniabgUIiYdGccaWGKbGaamiEaiabg2da9iaaikdacqaH8oqBdaahaaWcbeqaaiaaikdaaaaaaa@543D@

and

E ( μ 2 ) = μ 2 f ( x ) d x MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maapeaabaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aaaa@45E6@

or, since f ( x ) d x = 1 , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aOGaeyypa0JaaGymaiaacYcaaaa@3FB6@ that E ( μ 2 ) = μ 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeY7aTnaaCaaaleqabaGaaGOmaaaakiaac6caaaa@3F46@ Thus, E [ ( x μ ) 2 ] = E ( x 2 ) 2 μ 2 + μ 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaaIYaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaIYaaaaaaa@4BDD@ or

E [ ( x μ ) 2 ] = E ( x 2 ) μ 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcqaH8oqBdaahaaWcbeqaaiaaikdaaaGccaGGUaaaaa@4852@

For example, in Example 8 we found that μ = 1 a + 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaiaac6caaaa@3CA6@ The expected value of x 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaaWcbeqaaiaaikdaaaaaaa@37CF@ is

E [ x 2 ] = 0 1 ( x 2 ) x a d x = 0 1 x a + 2 d x = 1 a + 3 x a + 3 | 0 1 = 1 a + 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaikdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIZaaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaiodaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIZaaaaiaac6caaaa@61E1@

Thus, the variance of the distribution is

V ( x ) = 1 a + 3 ( 1 a + 2 ) 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGHbGaey4kaSIaaG4maaaacqGHsisldaqadaqaamaalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@444E@

or V ( x ) = ( a + 2 ) 2 ( a + 3 ) ( a + 3 ) ( a + 2 ) 2 = a 2 + 3 a + 1 ( a + 3 ) ( a + 2 ) 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsisldaqadaqaaiaadggacqGHRaWkcaaIZaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGHbGaey4kaSIaaG4maaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaadggacqGHRaWkcaaIXaaabaWaaeWaaeaacaWGHbGaey4kaSIaaG4maaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaaiOlaaaa@5E3A@

Expected value operation rules.

As shown in Example 9, the expected value operation allows several linear operations. Let a and b be a non-stochastic variables and x be a random variable. Then we have

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Econometrics for honors students. OpenStax CNX. Jul 20, 2010 Download for free at http://cnx.org/content/col11208/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Econometrics for honors students' conversation and receive update notifications?

Ask