<< Chapter < Page Chapter >> Page >

When that moment came we were going to ship all of them back.

All of our calculators used these TMS01xx devices. Generally we left the core to be the same and only developed the specific peripheral set and I/Os specific to the design of the calculator. We were designing with 7 micron p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) or just PMOS. This seemed to be the cheapest process with adequate performance for our use. We longed for the day we could use n-type MOSFETs (NMOS) in some of our higher end product lines to take advantage of the performance it could give us. That never happened on any of the products I was responsible for.

Forming the team

I moved from the sustaining job on the desk top product line to a Product Engineering position in the professional calculator product line. I noted that there was no difference between a Sustaining Engineer and a Product Engineer other than who they reported to. Having proven myself capable of keeping a product in production and also ramping up a new product into production, I was shuffled off to a new organization that was just forming – the educational products line. I had a new boss by the name of Paul Breedlove.

During this time at TI, I had also become friends with a chip architect by the name of Larry Brantingham. We began to collaborate on ideas that our managers came up with and needed someone to prove their value. We were also assigned some design issues on various new products, which seemed to be unsolvable, allowing us to get a shot at solving them. Larry actually was given more opportunity and I had been given, so I wisely made myself available to him to play with the ideas.

One of the new ideas that Larry and I were assigned to was the idea of an LCD calculator. TI had originally developed an LCD calculator, but it didn’t make it to market as the LCD technology was determined to be inadequate at the time. So we chose to exclusively keep to LED and Vacuum Florescent display technology. This changed very quickly after one of TI’s senior managers returned from Japan and noted that the LCD calculator was the calculator of choice. Larry and I were quickly assigned to design an LCD calculator for TI.

At the same time, Paul and I were busily putting the Li’l Professor™ into production in Lubbock, Texas. As one might expect, I was also working on some issues with one of the professional calculators, the SR-52, that I had helped take into production in Dallas. It had recently moved to the Lubbock production facility.

During our time taking the Li’l Professor into production, Paul had a brilliant idea of using similar concepts that we had used to teach math on the Li’l Professor to help children to spell.

Paul and his boss were both part of a brain storming session to determine how to make use of a brand new memory technology called bubble memories (2). These were large static memory devices using magnetic concepts to create “ones” and “zeros”. It was obvious that a spelling aid would require a great amount of memory to store the spoken and spelled words so it was perhaps a good fit for bubble memories. But, then Paul realized that all that was needed was a simple ROM to store all of the data. That made the memory system much easier to design and manufacture for our talking product, not to mention the obvious lower cost of a simple ROM.

The next big issue was the speech technique to pronounce the words. Paul had recently been part of our Speech Research team so he knew the state of the art of speech synthesis fairly well. He felt that, although impossible at the time, it was a promising new technology to use in a consumer product.

Once the memory and speech needs were resolved in his mind, he began the task of finding funding to develop the concept into a product. I will wait to cover this process in more detail in the next Chapter.

The final member of the team, Richard Wiggins, was a new employee in our Speech Research team. He had come to TI from MITR having done research on the theory of speech synthesis. As a new employee he wasn’t yet assigned to a research project.

Figure 4 is a picture of the four of us holding the Speak N Spell. It was taken near the end of the program.

Lessons learned

There are several points worth noting about this team that aren’t apparent at this point in the story.

First of all, we were all four in between assignments. This allowed us to either sit and do nothing until we were told what to do next; or it allowed us to explore and consider the next fun thing to do.

Second, we weren’t in the same specific organization – there were reporting boundaries that we needed to cross to be able to work together as a team. This issue stayed with us through the whole development program. In a later chapter I’ll give an example of working across boundaries to get prototypes through our production line in a timely manner.

Third, we were really young. When we began the project I was 27 years old, Larry was 26 and Paul and Richard were in their early 30s. One might summarize our success as “we weren’t smart enough to know it couldn’t be done".

The four of us made a great team: Paul was a creative thinker and the original manager of the project, I was the system designer, Larry was the IC architect and Richard was the speech scientist.

This was the team that started the journey together to develop the Speak N Spell Learning aid. In the end, the journey took just under 2 years, required a team of somewhere between 35 and 40 people, and had two or three State of the Art breakthroughs, depending on what you are willing to call a breakthrough. I’ll cover this in more detail later.

In the next chapter I’ll look a bit further into detail on how Paul came up with the idea and secured the funding for the initial part of the project.

The original team for the Speak N Spell program. From left to right: Gene Frantz, Richard Wiggins, Paul Breedlove and Larry Brantingham.


  1. US Patent 3,819,921, June 25,1974. Originally filed September 29, 1967 by Jack Kilby, Jerry Merryman and James Van Tassel
  2. http://en.wikipedia.org/wiki/Bubble_memory

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where is the latest information on a no technology how can I find it
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, The speak n spell. OpenStax CNX. Jan 31, 2014 Download for free at http://cnx.org/content/col11501/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The speak n spell' conversation and receive update notifications?