<< Chapter < Page Chapter >> Page >

Is daar ‘n spesiale woord vir die stippellyn in een van die vlieërs in die skets?

Het ek goeie werk gelewer in hierdie deel?

2. Sylengtes

Bestudeer nou al die verskillende weergawes van die ses soorte vierhoeke. Meet die sye so akkuraat as moontlik om uit te vind of daar sye is met gelyke lengtes, en merk hulle op die sketse. In hierdie parallelogram is die teenoorstaande sye gelyk, want hulle is gemerk met die klein strepies.

- Is ‘n ruit net ‘n parallelogram met vier gelyke sye?

3. Ewewydige sye

Soos jy sekerlik weet, bly ewewydige lyne altyd ewe ver van mekaar af. Dit beteken dat hulle nooit ontmoet nie, al maak jy hulle ook hoe lank. Hulle hoef nie ewe lank te wees nie. Jy weet reeds hoe om ewewydige lyne met klein pyltjies aan te dui.

Nou moet jy ewewydige lyne soek in al jou vierhoeke – dalk moet jy ‘n bietjie meetwerk doen. Dis nie maklik nie, maar as jy konsentreer en metodies te werk gaan, sal jy vorder. Merk dié wat jy vind.

- As jy net een sy van enige trapesium kon verander, sou jy dit ‘n parallelogram kon maak? Hoe moet jy die sy verander?

4. Binnehoekgroottes

Dit is maklik om die binnehoeke met jou gradeboog te meet. Skryf die groottes in op elke skets en soek dan gelyke hoeke en regte hoeke. Merk die gelyke hoeke soos in die skets van die parallelogram hier langsaan.

- Tel die binnehoekgroottes van elke vierhoek bymekaar en skryf die antwoord langs die vierhoek. Verbaas die antwoord jou?

5. Diagonale

Diagonale of hoeklyne word van een hoek na die teenoorstaande hoek getrek. Teken al die hoeklyne van al die vierhoeke (partykeer sal hulle saamval met die simmetrie–lyne).

Meet die hoeklyne om uit te vind in watter vierhoeke die hoeklyne gelyke lengtes het. Merk dié wat eenders is, soos jy gelyke sye gemerk het.

Gebruik jou gradeboog en meet noukeurig teen watter hoek die hoeklyne mekaar kruis, en skryf die waardes in op die sketse. Let op waar hierdie hoeke 90° is.

Die hoeklyne verdeel ook die binnehoeke. Meet hierdie hoeke wat so gevorm word, skryf die waardes in, en soek daardie gevalle waar die hoeklyne die binnehoeke presies halveer.

6. Tabelleer jou bevindings:

Voltooi die volgende tabel (om jou resultate op te som) van al die eienskappe van elke vierkant wat jy ondersoek het.

Maak seker dat jou waarnemings vir alle weergawes van dieselfde vorm geld. Byvoorbeeld, een trapesium het dalk gelyke hoeklyne, maar geld dit vir alle trapesiums? As jy vind dat ‘n ruit twee gelyke hoeklyne het, is die regte naam daarvoor wel “ruit”?

Hierdie tabel is vol nuttige inligting. Maak seker al die inskrywings is korrek, en hou dit vir die volgende oefeninge.

Vierkant Ruit Parallelo-gram Reghoek Trapesium Vlieër
Aantal simmetrie–lyne
Alle sye gelyk
2 pare teenoorstaande sye gelyk
2 pare aanliggende sye gelyk
2 pare ewewydige sye
Slegs 1 paar ewewydige sye
Geen ewewydige sye
Alle binnehoeke gelyk
2 pare teenoorstaande binnehoeke gelyk
Slegs 1 paar teenoorstaande hoeke gelyk
Hoeklyne altyd gelyk
Hoeklyne loodreg op mekaar
Beide hoeklyne halveer binnehoeke
Slegs een hoeklyn halveer binnehoeke
Beide hoeklyne halveer oppervlakte van vierhoek
Slegs een hoeklyn halveer oppervlakte
Hoeklyne halveer mekaar

Questions & Answers

what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?

Ask