<< Chapter < Page Chapter >> Page >

Is daar ‘n spesiale woord vir die stippellyn in een van die vlieërs in die skets?

Het ek goeie werk gelewer in hierdie deel?

2. Sylengtes

Bestudeer nou al die verskillende weergawes van die ses soorte vierhoeke. Meet die sye so akkuraat as moontlik om uit te vind of daar sye is met gelyke lengtes, en merk hulle op die sketse. In hierdie parallelogram is die teenoorstaande sye gelyk, want hulle is gemerk met die klein strepies.

- Is ‘n ruit net ‘n parallelogram met vier gelyke sye?

3. Ewewydige sye

Soos jy sekerlik weet, bly ewewydige lyne altyd ewe ver van mekaar af. Dit beteken dat hulle nooit ontmoet nie, al maak jy hulle ook hoe lank. Hulle hoef nie ewe lank te wees nie. Jy weet reeds hoe om ewewydige lyne met klein pyltjies aan te dui.

Nou moet jy ewewydige lyne soek in al jou vierhoeke – dalk moet jy ‘n bietjie meetwerk doen. Dis nie maklik nie, maar as jy konsentreer en metodies te werk gaan, sal jy vorder. Merk dié wat jy vind.

- As jy net een sy van enige trapesium kon verander, sou jy dit ‘n parallelogram kon maak? Hoe moet jy die sy verander?

4. Binnehoekgroottes

Dit is maklik om die binnehoeke met jou gradeboog te meet. Skryf die groottes in op elke skets en soek dan gelyke hoeke en regte hoeke. Merk die gelyke hoeke soos in die skets van die parallelogram hier langsaan.

- Tel die binnehoekgroottes van elke vierhoek bymekaar en skryf die antwoord langs die vierhoek. Verbaas die antwoord jou?

5. Diagonale

Diagonale of hoeklyne word van een hoek na die teenoorstaande hoek getrek. Teken al die hoeklyne van al die vierhoeke (partykeer sal hulle saamval met die simmetrie–lyne).

Meet die hoeklyne om uit te vind in watter vierhoeke die hoeklyne gelyke lengtes het. Merk dié wat eenders is, soos jy gelyke sye gemerk het.

Gebruik jou gradeboog en meet noukeurig teen watter hoek die hoeklyne mekaar kruis, en skryf die waardes in op die sketse. Let op waar hierdie hoeke 90° is.

Die hoeklyne verdeel ook die binnehoeke. Meet hierdie hoeke wat so gevorm word, skryf die waardes in, en soek daardie gevalle waar die hoeklyne die binnehoeke presies halveer.

6. Tabelleer jou bevindings:

Voltooi die volgende tabel (om jou resultate op te som) van al die eienskappe van elke vierkant wat jy ondersoek het.

Maak seker dat jou waarnemings vir alle weergawes van dieselfde vorm geld. Byvoorbeeld, een trapesium het dalk gelyke hoeklyne, maar geld dit vir alle trapesiums? As jy vind dat ‘n ruit twee gelyke hoeklyne het, is die regte naam daarvoor wel “ruit”?

Hierdie tabel is vol nuttige inligting. Maak seker al die inskrywings is korrek, en hou dit vir die volgende oefeninge.

Vierkant Ruit Parallelo-gram Reghoek Trapesium Vlieër
Aantal simmetrie–lyne
Alle sye gelyk
2 pare teenoorstaande sye gelyk
2 pare aanliggende sye gelyk
2 pare ewewydige sye
Slegs 1 paar ewewydige sye
Geen ewewydige sye
Alle binnehoeke gelyk
2 pare teenoorstaande binnehoeke gelyk
Slegs 1 paar teenoorstaande hoeke gelyk
Hoeklyne altyd gelyk
Hoeklyne loodreg op mekaar
Beide hoeklyne halveer binnehoeke
Slegs een hoeklyn halveer binnehoeke
Beide hoeklyne halveer oppervlakte van vierhoek
Slegs een hoeklyn halveer oppervlakte
Hoeklyne halveer mekaar

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?

Ask