# Rotation angle and angular velocity  (Page 2/9)

 Page 2 / 9
$v=\frac{\text{Δ}s}{\text{Δ}t}\text{.}$

From $\text{Δ}\theta =\frac{\text{Δ}s}{r}$ we see that $\text{Δ}s=r\text{Δ}\theta$ . Substituting this into the expression for $v$ gives

$v=\frac{r\text{Δ}\theta }{\text{Δ}t}=\mathrm{r\omega }\text{.}$

We write this relationship in two different ways and gain two different insights:

The first relationship in states that the linear velocity $v$ is proportional to the distance from the center of rotation, thus, it is largest for a point on the rim (largest $r$ ), as you might expect. We can also call this linear speed $v$ of a point on the rim the tangential speed . The second relationship in can be illustrated by considering the tire of a moving car. Note that the speed of a point on the rim of the tire is the same as the speed $v$ of the car. See [link] . So the faster the car moves, the faster the tire spins—large $v$ means a large $\omega$ , because $v=\mathrm{r\omega }$ . Similarly, a larger-radius tire rotating at the same angular velocity ( $\omega$ ) will produce a greater linear speed ( $v$ ) for the car.

## How fast does a car tire spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at $\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}$ (about $\text{54}\phantom{\rule{0.25em}{0ex}}\text{km/h}$ ). See [link] .

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have $v=\text{15.0 m/s}.$ The radius of the tire is given to be $r=\text{0.300 m}.$ Knowing $v$ and $r$ , we can use the second relationship in to calculate the angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

$\omega =\frac{v}{r}\text{.}$

Substituting the knowns,

$\omega =\frac{\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}}{0\text{.}\text{300}\phantom{\rule{0.25em}{0ex}}\text{m}}=\text{50}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{rad/s.}$

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

$\omega =\left(\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}\right)/\left(1\text{.}\text{20}\phantom{\rule{0.25em}{0ex}}\text{m}\right)=\text{12}\text{.}5\phantom{\rule{0.25em}{0ex}}\text{rad/s.}$

Both $\omega$ and $v$ have directions (hence they are angular and linear velocities , respectively). Angular velocity has only two directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as illustrated in [link] .

## Take-home experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point. Identify other circular motions and measure their angular velocities.

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
Berger describes sociologists as concerned with
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good