# Quadratic concepts -- multiplying binomials  (Page 5/1)

 Page 1 / 1
This module teaches about multiplying binomials. Specifically about common patterns that can be memorized and using the "FOIL" method.

The following three formulae should be memorized.

${\left(x+a\right)}^{2}={x}^{2}+2\text{ax}+{a}^{2}$
${\left(x-a\right)}^{2}={x}^{2}-2\text{ax}+{a}^{2}$
$\left(x+a\right)\left(x-a\right)={x}^{2}-{a}^{2}$

It is important to have these three formulae on the top of your head. It is also nice to be able to show why these formulae work, for instance by using FOIL. But the most important thing of all is knowing what these three formulae mean, and how to use them .

These three are all “algebraic generalizations,” as discussed in the first unit on functions. That is, they are equations that hold true for any values of $x$ and $a$ . It may help if you think of the second equation above as standing for:

${\left(\text{Anthing}-\text{Anything Else}\right)}^{2}={\text{Anything}}^{2}-2{\left(\text{Anything Else}\right)}^{2}$ For instance, suppose the Anything (or $x$ ) is 5, and the Anything Else (or $a$ ) is 3.

${\left(x-a\right)}^{2}={x}^{2}-2\text{ax}+{a}^{2}$ , when $x=5$ , $a=3$ .

• $5-{3}^{2}\stackrel{?}{=}{5}^{2}-2\left(3\right)\left(5\right)+{3}^{2}$
• ${2}^{2}\stackrel{?}{=}\text{25}-\text{30}+9$
• $4=4$

It worked! Now, let’s leave the Anything as $x$ , but play with different values of $a$ .

More examples of ${\left(x-a\right)}^{2}={x}^{2}-2\text{ax}+{a}^{2}$

$\begin{array}{cccc}a=1:& \left(x-1{\right)}^{2}& =& {x}^{2}-2x+1\\ a=2:& \left(x-2{\right)}^{2}& =& {x}^{2}-4x+4\\ a=3:& \left(x-3{\right)}^{2}& =& {x}^{2}-6x+9\\ a=5:& \left(x-5{\right)}^{2}& =& {x}^{2}-10x+25\\ a=10:& \left(x-10{\right)}^{2}& =& {x}^{2}-20x+100\end{array}$

Once you’ve seen a few of these, the pattern becomes evident: the number doubles to create the middle term (the coefficient of $x$ ), and squares to create the final term (the number).

${\left(2y-6\right)}^{2}$

There are three ways you can approach this.

${\left(2y-6\right)}^{2}$ , computed three different ways
Square each term FOIL Using the formula above
$\begin{array}{cc}& {\left(2y-6\right)}^{2}\\ & {\left(2y\right)}^{2}-2\left(6\right)\left(2y\right)+{6}^{2}\\ & {4y}^{2}-\text{24}y+\text{36}\end{array}$ $\begin{array}{cc}& \left(2y-6\right)\left(2y-6\right)\\ & \left(2y\right)\left(2y\right)-\left(2y\right)6-\left(2y\right)6+\text{36}\\ & {4y}^{2}-\text{12}y-\text{12}y+\text{36}\\ & {4y}^{2}-\text{24}y+\text{36}\end{array}$ $\begin{array}{cc}& {\left(2y-6\right)}^{2}\\ & {\left(2y\right)}^{2}-2\left(6\right)\left(2y\right)+{6}^{2}\\ & {4y}^{2}-\text{24}y+\text{36}\end{array}$

Did it work? If a formula is true, it should work for any $y$ -value; let’s test each one with $y=5$ . (Note that the second two methods got the same answer, so we only need to test that once.)

 $\begin{array}{ccc}{\left(2y-6\right)}^{2}& \stackrel{?}{=}& {4y}^{2}-\text{36}\\ {\left(2\cdot 5-6\right)}^{2}& \stackrel{?}{=}& {4y}^{2}-\text{36}\\ {\left(\text{10}-6\right)}^{2}& \stackrel{?}{=}& \text{100}-\text{36}\\ {4}^{2}& \stackrel{?}{=}& \text{64}✗\end{array}$ $\begin{array}{ccc}{\left(2y-6\right)}^{2}& \stackrel{?}{=}& {4y}^{2}-\text{24}y+\text{36}\\ {\left(2\cdot 5-6\right)}^{2}& \stackrel{?}{=}& 4{\left(5\right)}^{2}-\text{24}\cdot 5+\text{36}\\ {\left(\text{10}-6\right)}^{2}& \stackrel{?}{=}& \text{100}-\text{120}+\text{36}\\ {4}^{2}& \stackrel{?}{=}& \text{16}✓\end{array}$

We conclude that squaring each term individually does not work. The other two methods both give the same answer, which works.

The first method is the easiest, of course. And it looks good. ${\left(2y\right)}^{2}$ is indeed ${4y}^{2}$ . And ${6}^{2}$ is indeed 36. But as you can see, it led us to a false answer —an algebraic generalization that did not hold up.

I just can’t stress this point enough. It sounds like a detail, but it causes errors all through Algebra II and beyond. When you’re adding or subtracting things, and then squaring them, you can’t just square them one at a time. Mathematically, ${\left(x+a\right)}^{2}\ne {x}^{2}+{a}^{2}$ . You can confirm this with numbers all day. ${\left(7+3\right)}^{2}=\text{100}$ , but ${7}^{2}+{3}^{2}=\text{58}$ . They’re not the same.

So that leaves the other two methods. FOIL will never lead you astray. But the third approach, the formula, has three distinct advantages.

1. The formula is faster than FOIL.
2. Using these formulae is a specific case of the vital mathematical skill of using any formula—learning how to plug numbers and variables into some equation that you’ve been given, and therefore understanding the abstraction that formulae represent.
3. Before this unit is done, we will be completing the square, which requires running that particular formula backward —which you cannot do with FOIL.

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Got questions? Join the online conversation and get instant answers!