<< Chapter < Page Chapter >> Page >
This module teaches about multiplying binomials. Specifically about common patterns that can be memorized and using the "FOIL" method.

The following three formulae should be memorized.

x + a 2 = x 2 + 2 ax + a 2 size 12{ left (x+a right ) rSup { size 8{2} } =x rSup { size 8{2} } +2 ital "ax"+a rSup { size 8{2} } } {}
x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}
x + a x a = x 2 a 2 size 12{ left (x+a right ) left (x - a right )=x rSup { size 8{2} } - a rSup { size 8{2} } } {}

It is important to have these three formulae on the top of your head. It is also nice to be able to show why these formulae work, for instance by using FOIL. But the most important thing of all is knowing what these three formulae mean, and how to use them .

These three are all “algebraic generalizations,” as discussed in the first unit on functions. That is, they are equations that hold true for any values of x size 12{x} {} and a size 12{a} {} . It may help if you think of the second equation above as standing for:

Anthing Anything Else 2 = Anything 2 2 Anything Else 2 size 12{ left ("Anthing" - "Anything Else" right ) rSup { size 8{2} } ="Anything" rSup { size 8{2} } - 2 left ("Anything Else" right ) rSup { size 8{2} } } {} For instance, suppose the Anything (or x size 12{x} {} ) is 5, and the Anything Else (or a size 12{a} {} ) is 3.

x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {} , when x = 5 size 12{x=5} {} , a = 3 size 12{a=3} {} .

  • 5 3 2 = ? 5 2 2 3 5 + 3 2 size 12{5 - 3 rSup { size 8{2} } { {}={}} cSup { size 8{?} } 5 rSup { size 8{2} } - 2 left (3 right ) left (5 right )+3 rSup { size 8{2} } } {}
  • 2 2 = ? 25 30 + 9 size 12{2 rSup { size 8{2} } { {}={}} cSup { size 8{?} } "25" - "30"+9} {}
  • 4 = 4 size 12{4=4} {}
Got questions? Get instant answers now!

It worked! Now, let’s leave the Anything as x size 12{x} {} , but play with different values of a size 12{a} {} .

More examples of x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}

a = 1 : ( x - 1 ) 2 = x 2 - 2 x + 1 a = 2 : ( x - 2 ) 2 = x 2 - 4 x + 4 a = 3 : ( x - 3 ) 2 = x 2 - 6 x + 9 a = 5 : ( x - 5 ) 2 = x 2 - 10 x + 25 a = 10 : ( x - 10 ) 2 = x 2 - 20 x + 100
Got questions? Get instant answers now!

Once you’ve seen a few of these, the pattern becomes evident: the number doubles to create the middle term (the coefficient of x size 12{x} {} ), and squares to create the final term (the number).

The hardest thing about this formula is remembering to use it . For instance, suppose you are asked to expand:

2y 6 2 size 12{ left (2y - 6 right ) rSup { size 8{2} } } {}

There are three ways you can approach this.

2y 6 2 , computed three different ways
Square each term FOIL Using the formula above
2y 6 2 2y 2 2 6 2y + 6 2 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) rSup { size 8{2} } {} ##={} {} # left (2y right ) rSup { size 8{2} } - 2 left (6 right ) left (2y right )+6 rSup { size 8{2} } {} ## ={} {} # 4y rSup { size 8{2} } - "24"y+"36"{}} } {} 2y 6 2y 6 2y 2y 2y 6 2y 6 + 36 4y 2 12 y 12 y + 36 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) left (2y - 6 right ) {} ##={} {} # left (2y right ) left (2y right ) - left (2y right )6 - left (2y right )6+"36" {} ## ={} {} # 4y rSup { size 8{2} } - "12"y - "12"y+"36" {} ##={} {} # 4y rSup { size 8{2} } - "24"y+"36"{} } } {} 2y 6 2 2y 2 2 6 2y + 6 2 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) rSup { size 8{2} } {} ##={} {} # left (2y right ) rSup { size 8{2} } - 2 left (6 right ) left (2y right )+6 rSup { size 8{2} } {} ## ={} {} # 4y rSup { size 8{2} } - "24"y+"36"{}} } {}

Did it work? If a formula is true, it should work for any y size 12{y} {} -value; let’s test each one with y = 5 size 12{y=5} {} . (Note that the second two methods got the same answer, so we only need to test that once.)

2y 6 2 = ? 4y 2 36 2 5 6 2 = ? 4y 2 36 10 6 2 = ? 100 36 4 2 = ? 64 size 12{ matrix { left (2y - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "36" {} ##left (2 cdot 5 - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "36" {} ## left ("10" - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "100" - "36" {} ##4 rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "64"{} } } {} 2y 6 2 = ? 4y 2 24 y + 36 2 5 6 2 = ? 4 5 2 24 5 + 36 10 6 2 = ? 100 120 + 36 4 2 = ? 16 size 12{ matrix { left (2y - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "24"y+"36" {} ##left (2 cdot 5 - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4 left (5 right ) rSup { size 8{2} } - "24" cdot 5+"36" {} ## left ("10" - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "100" - "120"+"36" {} ##4 rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "16"{} } } {}

We conclude that squaring each term individually does not work. The other two methods both give the same answer, which works.

The first method is the easiest, of course. And it looks good. 2y 2 size 12{ left (2y right ) rSup { size 8{2} } } {} is indeed 4y 2 size 12{4y rSup { size 8{2} } } {} . And 6 2 size 12{6 rSup { size 8{2} } } {} is indeed 36. But as you can see, it led us to a false answer —an algebraic generalization that did not hold up.

I just can’t stress this point enough. It sounds like a detail, but it causes errors all through Algebra II and beyond. When you’re adding or subtracting things, and then squaring them, you can’t just square them one at a time. Mathematically, x + a 2 x 2 + a 2 size 12{ left (x+a right ) rSup { size 8{2} }<>x rSup { size 8{2} } +a rSup { size 8{2} } } {} . You can confirm this with numbers all day. 7 + 3 2 = 100 size 12{ left (7+3 right ) rSup { size 8{2} } ="100"} {} , but 7 2 + 3 2 = 58 size 12{7 rSup { size 8{2} } +3 rSup { size 8{2} } ="58"} {} . They’re not the same.

So that leaves the other two methods. FOIL will never lead you astray. But the third approach, the formula, has three distinct advantages.

  1. The formula is faster than FOIL.
  2. Using these formulae is a specific case of the vital mathematical skill of using any formula—learning how to plug numbers and variables into some equation that you’ve been given, and therefore understanding the abstraction that formulae represent.
  3. Before this unit is done, we will be completing the square, which requires running that particular formula backward —which you cannot do with FOIL.

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Advanced algebra ii: conceptual explanations. OpenStax CNX. May 04, 2010 Download for free at http://cnx.org/content/col10624/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: conceptual explanations' conversation and receive update notifications?

Ask