<< Chapter < Page | Chapter >> Page > |
For example,
Equal Measurements | Unit Fraction |
$\text{1ft}=\text{12in.}$ | $\frac{\text{1ft}}{\text{12in.}}\text{or}\frac{\text{12in.}}{\text{1ft}}$ |
$\text{1pt}=\text{16 fl oz}$ | $\frac{\text{1pt}}{\text{16 fl oz}}\text{or}\frac{\text{16 fl oz}}{\text{1pt}}$ |
$\text{1wk}=\text{7da}$ | $\frac{\text{7da}}{\text{1wk}}\text{or}\frac{\text{1wk}}{\text{7da}}$ |
Make the following conversions. If a fraction occurs, convert it to a decimal rounded to two decimal places.
Convert 11 yards to feet.
Looking in the unit conversion table under length , we see that $1\text{yd}=\text{3 ft}$ . There are two corresponding unit fractions, $\frac{\text{1 yd}}{\text{3 ft}}$ and $\frac{\text{3 ft}}{\text{1 yd}}$ . Which one should we use? Look to see which unit we wish to convert to. Choose the unit fraction with this unit in the numerator . We will choose $\frac{\text{3 ft}}{\text{1 yd}}$ since this unit fraction has feet in the numerator. Now, multiply 11 yd by the unit fraction. Notice that since the unit fraction has the value of 1, multiplying by it does not change the value of 11 yd.
$\begin{array}{cccc}\hfill 11\text{yd}& =& \frac{\text{11}\text{yd}}{1}\cdot \frac{3\text{ft}}{\text{1yd}}\hfill & \text{Divide out common units.}\hfill \\ & =& \frac{11\overline{)\text{yd}}}{1}\cdot \frac{3\text{ft}}{1\overline{)\text{yd}}}\hfill & \text{(Units can be added, subtracted, multiplied, and divided, just as numbers can.)}\hfill \\ & =& \frac{11\cdot 3\text{ft}}{1}\hfill & \\ & =& 33\text{ft}\hfill & \end{array}$
Thus, $11\text{yd}=33\text{ft}$ .
Convert 36 fl oz to pints.
Looking in the unit conversion table under liquid volume , we see that $\text{1 pt}=\text{16 fl oz}$ . Since we are to convert to pints, we will construct a unit fraction with pints in the numerator.
$\begin{array}{cccc}\hfill 36\text{fl oz}& =\hfill & \frac{36\text{fl oz}}{1}\cdot \frac{1\text{pt}}{16\text{fl oz}}& \text{Divide out common units.}\hfill \\ & =& \frac{36\overline{)\text{fl oz}}}{1}\cdot \frac{1\text{pt}}{16\overline{)\text{fl oz}}}\hfill & \\ & =& \frac{36\cdot \text{1 pt}}{16}\hfill & \\ & =& \frac{\text{36 pt}}{16}\hfill & \text{Reduce.}\hfill \\ & =& \frac{9}{4}\text{pt}\hfill & \text{Convert to decimals:}\frac{9}{4}=2.25.\hfill \end{array}$
Thus, $\text{36 fl oz}=\text{2}\text{.}\text{25 pt}$ .
Convert 2,016 hr to weeks.
Looking in the unit conversion table under time , we see that $\text{1wk}=\text{7da}$ and that $1\text{da}=\text{24 hr}$ . To convert from hours to weeks, we must first convert from hours to days and then from days to weeks. We need two unit fractions.
The unit fraction needed for converting from hours to days is $\frac{\text{1 da}}{\text{24 hr}}$ . The unit fraction needed for converting from days to weeks is $\frac{\text{1 wk}}{\text{7 da}}$ .
$\begin{array}{cccc}\hfill \mathrm{2,016}\text{hr}& =& \frac{\mathrm{2,016}\text{hr}}{1}\cdot \frac{1\text{da}}{24\text{hr}}\cdot \frac{1\text{wk}}{7\text{da}}\hfill & \text{Divide out common units.}\hfill \\ & =& \frac{\mathrm{2,016}\overline{)\text{hr}}}{1}\cdot \frac{1\overline{)\text{da}}}{24\overline{)\text{hr}}}\cdot \frac{1\text{wk}}{7\overline{)\text{da}}}\hfill & \hfill \\ & =& \frac{\mathrm{2,016}\cdot 1\text{wk}}{24\cdot 7}\hfill & \text{Reduce.}\hfill \\ & =& 12\text{wk}\hfill & \end{array}$
Thus, $\text{2,016 hr}=\text{12 wk}$ .
Make the following conversions. If a fraction occurs, convert it to a decimal rounded to two decimal places.
Convert 18 ft to yards.
6 yd
Convert 2 mi to feet.
10,560 ft
Convert 26 ft to yards.
8.67 yd
Convert 9 qt to pints.
18 pt
Convert 52 min to hours.
0.87 hr
Convert 412 hr to weeks.
2.45 wk
Make each conversion using unit fractions. If fractions occur, convert them to decimals rounded to two decimal places.
14 yd to feet
42 feet
3 mi to yards
8 mi to inches
506,880 inches
2 mi to inches
18 in. to feet
1.5 feet
84 in. to yards
5 in. to yards
0.14 yard
106 ft to miles
62 in. to miles
0.00 miles (to two decimal places)
0.4 in. to yards
3 qt to pints
6 pints
5 lb to ounces
6 T to ounces
192,000 ounces
4 oz to pounds
15,000 oz to pounds
937.5 pounds
15,000 oz to tons
9 tbsp to teaspoons
27 teaspoons
3 c to tablespoons
5 pt to fluid ounces
80 fluid ounces
16 tsp to cups
5 fl oz to quarts
0.16 quart
3 qt to gallons
5 pt to teaspoons
480 teaspoons
3 qt to tablespoons
18 min to seconds
1,080 seconds
4 days to hours
3 hr to days
$\frac{1}{8}=0\text{.}\text{125}$ day
$\frac{1}{2}$ hr to days
$\frac{1}{2}$ da to weeks
$\frac{1}{\text{14}}=0\text{.}\text{0714}$ week
$3\frac{1}{7}$ wk to seconds
( [link] ) Specify the digits by which 23,840 is divisible.
1,2,4,5,8
( [link] ) Find $2\frac{4}{5}$ of $5\frac{5}{6}$ of $7\frac{5}{7}$ .
( [link] ) Convert $0\text{.}3\frac{2}{3}$ to a fraction.
$\frac{\text{11}}{\text{30}}$
( [link] ) Use the clustering method to estimate the sum: $\text{53}+\text{82}+\text{79}+\text{49}$ .
( [link] ) Use the distributive property to compute the product: $\text{60}\cdot \text{46}$ .
$\text{60}(\text{50}-4)=\mathrm{3,}\text{000}-\text{240}=\mathrm{2,}\text{760}$
Notification Switch
Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?