<< Chapter < Page Chapter >> Page >
This chapter provides an introduction to LabVIEW graphical programming.

The LabVIEW graphical programming environment can be used to design and analyze a signal processing system in a more time-efficient manner than with text-based programming environments. This chapter provides an introduction to LabVIEW graphical programming. Also see [link] , [link] , and [link] to learn more about LabVIEW graphical programming.

LabVIEW graphical programs are called virtual instruments (VIs). VIs run based on the concept of dataflow programming. This means that execution of a block or a graphical component is dependent on the flow of data, or, more specifically, a block executes after data is made available at all of its inputs. Block output data are then sent to all other connected blocks. With dataflow programming, one can perform multiple operations in parallel because the execution of blocks is done by the flow of data and not by sequential lines of code.

Virtual instruments (vis)

A VI consists of two major components: a front panel and block diagram. A front panel provides the user interface of a program while a block diagram incorporates its graphical code. When a VI is located within the block diagram of another VI, it is called a subVI. LabVIEW VIs are modular, meaning that one can run any VI or subVI by itself.

Front panel and block diagram

A front panel contains the user interfaces of a VI shown in a block diagram. VI inputs are represented by controls such as knobs, pushbuttons and dials. VI outputs are represented by indicators such as graphs, LEDs (light indicators) and meters. As a VI runs, its front panel provides a display or user interface of controls (inputs) and indicators (outputs).

A block diagram contains terminal icons, nodes, wires and structures. Terminal icons, or interfaces through which data are exchanged between a front panel and a block diagram, correspond to controls or indicators that appear on a front panel. Whenever a control or indicator is placed on a front panel, a terminal icon gets added to the corresponding block diagram. A node represents an object or block that has input and/or output connectors and performs a certain function. SubVIs and functions are examples of nodes. Wires establish the flow of data in a block diagram, and structures control the flow of data such as repetitions or conditional executions. [link] shows front panel and block diagram windows.

LabVIEW Windows: Front Panel and Block Diagram

Icon and connector pane

A VI icon is a graphical representation of a VI. It appears in the top right corner of a block diagram or a front panel window. When a VI is inserted into a block diagram as a subVI, its icon is displayed.

A connector pane defines VI inputs (controls) and outputs (indicators). One can change the number of inputs and outputs by using different connector pane patterns. In [link] , a VI icon is shown at the top right corner of the block diagram, and its corresponding connector pane, with two inputs and one output, is shown at the top right corner of the front panel.

Questions & Answers

what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?