<< Chapter < Page Chapter >> Page >

Introduction to functions and graphs

Functions are mathematical building blocks for designing machines, predicting natural disasters, curing diseases, understanding world economies and for keeping aeroplanes in the air. Functions can take input from many variables, but always give the same answer, unique to that function. It is the fact that you always get the same answer from a set of inputs that makes functions special.

A major advantage of functions is that they allow us to visualise equations in terms of a graph . A graph is an accurate drawing of a function and is much easier to read than lists of numbers. In this chapter we will learn how to understand and create real valued functions, how to read graphs and how to draw them.

Despite their use in the problems facing humanity, functions also appear on a day-to-day level, so they are worth learning about. A function is always dependent on one or more variables, like time, distance or a more abstract quantity.

Functions and graphs in the real-world

Some typical examples of functions you may already have met include:-

  • how much money you have, as a function of time. You never have more than one amount of money at any time because you can always add everything to give one number. By understanding how your money changes over time, you can plan to spend your money sensibly. Businesses find it very useful to plot the graph of their money over time so that they can see when they are spending too much. Such observations are not always obvious from looking at the numbers alone.
  • the temperature is a very complicated function because it has so many inputs, including; the time of day, the season, the amount of clouds in the sky, the strength of the wind, where you are and many more. But the important thing is that there is only one temperature when you measure it in a specific place. By understanding how the temperature is effected by these things, you can plan for the day.
  • where you are is a function of time, because you cannot be in two places at once! If you were to plot the graphs of where two people are as a function of time, if the lines cross it means that the two people meet each other at that time. This idea is used in logistics , an area of mathematics that tries to plan where people and items are for businesses.
  • your weight is a function of how much you eat and how much exercise you do, but everybody has a different function so that is why people are all different sizes.

Recap

The following should be familiar.

Variables and constants

In Review of past work , we were introduced to variables and constants. To recap, a variable can take any value in some set of numbers, so long as the equation is consistent. Most often, a variable will be written as a letter.

A constant has a fixed value. The number 1 is a constant. Sometimes letters are used to represent constants, as they are easier to work with.

Investigation : variables and constants

In the following expressions, identify the variables and the constants:

  1. 2 x 2 = 1
  2. 3 x + 4 y = 7
  3. y = - 5 x
  4. y = 7 x - 2

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [ncs]. OpenStax CNX. Aug 05, 2011 Download for free at http://cnx.org/content/col11239/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [ncs]' conversation and receive update notifications?

Ask