<< Chapter < Page Chapter >> Page >

Ondersoek: veranderlikes en konstantes.

Identifiseer die veranderlikes en die konstantes in die volgende vergelykings:

  1. 2 x 2 = 1
  2. 3 x + 4 y = 7
  3. y = - 5 x
  4. y = 7 x - 2

Relasies en funksies

In die verlede het jy gesien veranderlikes kan relasies (verhoudings) hê met mekaar. Byvoorbeeld, Anton is 2 jaar ouer as Naomi. Die relasie of verband tussen die ouderdomme van Anton en Naomi kan geskryf word as A = N + 2 , waar Anton se ouderdom voorgestel word met A en Naomi se ouderdom voorgestel word met N .

In die algemeen is 'n relasie 'n vergelyking met twee veranderlikes. Byvoorbeeld, y = 5 x en y 2 + x 2 = 5 is relasies. In albei voorbeelde is x en y veranderlikes en 5 is 'n konstante. Vir elke waarde van x sal jy 'n ander, unieke waarde vir y kry.

Mens hoef nie relasies as vergelykings te skryf nie, dit kan ook weergegee word in woorde, tabelle of grafieke. Byvoorbeeld, in plaas van y = 5 x te skryf, kan mens sê “ y is vyf keer so groot as x ”. Ons kan ook die volgende tabel gee:

x y = 5 x
2 10
6 30
8 40
13 65
15 75

Ondersoek: relasies en funksies

Voltooi die volgende tabel vir die gegewe funksies:

x y = x y = 2 x y = x + 2
1
2
3
50
100

Die cartesiese vlak

Wanneer ons met funksies met reële getalle werk, is ons vernaamste stuk gereedskap 'n grafiek. Eerstens, indien ons twee reële veranderlikes het, x en y , kan ons gelyktydig vir hulle waardes toeken. Byvoorbeeld, ons kan sê " x is 5 en y is 3”. Net soos wat ons vir " x is 5” verkort deur te skryf " x = 5 ”, kan ons ook “ x is 5 en y is 3” verkort deur te sê “ ( x ; y ) = ( 5 ; 3 ) ”. Gewoonlik as ons dink aan reële getalle, dink ons aan 'n oneindige lang lyn en 'n getal as 'n punt op die lyn. Indien ons twee getalle op dieselfde tyd kies, kan ons iets soortgelyks doen, maar nou gebruik ons twee dimensies. Ons gebruik nou twee lyne, een vir x en een vir y , met die lyn vir y , geroteer, soos in [link] .Ons noem dit die Cartesiese vlak .

Die Cartesiese vlak bestaan uit 'n x - as (horisontaal) en 'n y - as (vertikaal).

Teken van grafieke

Om 'n grafiek van 'n funksie te teken, moet ons 'n paar punte bereken en stip op die Cartesiese vlak. Die punte word dan in volgorde verbind om 'n gladde lyn te vorm.

Kom ons kyk na die funksie, f ( x ) = 2 x . Ons kan dan al die punte ( x ; y ) beskou wat so is dat y = f ( x ) , in hierdie geval y = 2 x . Byvoorbeeld ( 1 ; 2 ) , ( 2 , 5 ; 5 ) , en ( 3 ; 6 ) stel sulke punte voor en ( 3 ; 5 ) stel nie so 'n punt voor nie, aangesien 5 2 × 3 . Indien ons 'n kol op al die punte sit, asook al die soortgelyke punte vir alle moontlike waardes van x , sal ons die grafiek soos in [link] kry.

Grafiek van f ( x ) = 2 x

Die vorm van die grafiek is baie eenvoudig, dit is bloot ’n reguitlyn deur die middel van die vlak. Hierdie "stippingstegniek" is die sleutel tot die verstaan van funksies.

Ondersoek: teken van grafieke en die cartesiese vlak

Stip die volgende punte en trek 'n gladde lyn deur hulle: (-6; -8), (-2; 0), (2; 8), (6; 16).

Notasie vir funksies

Tot dus ver het ons gesien jy kan y = 2 x gebruik om 'n funksie voor te stel. Hierdie notasie raak verwarrend as jy met meer as een funksie werk. 'n Meer algemene manier om funksies neer te skryf, is deur die notasie f ( x ) , te gebruik, waar f die funksienaam en x die onafhanklike veranderlike is. Byvoorbeeld, f ( x ) = 2 x en g ( t ) = 2 t + 1 is twee verskillende funksies. Met f en g die name en x en t die veranderlikes. As mens van f ( x ) praat, sê mens “f van x”.

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask