# Further applications of newton’s laws of motion

 Page 1 / 6
• Apply problem-solving techniques to solve for quantities in more complex systems of forces.
• Integrate concepts from kinematics to solve problems using Newton's laws of motion.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

## Drag force on a barge

Suppose two tugboats push on a barge at different angles, as shown in [link] . The first tugboat exerts a force of $2.7×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}$ in the x -direction, and the second tugboat exerts a force of $3.6×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}$ in the y -direction.

If the mass of the barge is $5.0×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{kg}$ and its acceleration is observed to be $7\text{.}\text{5}×{\text{10}}^{-2}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ in the direction shown, what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in [link] (a) . We will define the total force of the tugboats on the barge as ${\mathbf{\text{F}}}_{\text{app}}$ so that:

${\mathbf{\text{F}}}_{\text{app}}\text{=}{\mathbf{\text{F}}}_{\mathit{x}}+{\mathbf{\text{F}}}_{\mathit{y}}$

Since the barge is flat bottomed, the drag of the water ${\mathbf{\text{F}}}_{\text{D}}$ will be in the direction opposite to ${\mathbf{\text{F}}}_{\text{app}}$ , as shown in the free-body diagram in [link] (b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Our strategy is to find the magnitude and direction of the net applied force ${\mathbf{\text{F}}}_{\text{app}}$ , and then apply Newton’s second law to solve for the drag force ${\mathbf{\text{F}}}_{\text{D}}$ .

Solution

Since ${\mathbf{\text{F}}}_{x}$ and ${\mathbf{\text{F}}}_{y}$ are perpendicular, the magnitude and direction of ${\mathbf{\text{F}}}_{\text{app}}$ are easily found. First, the resultant magnitude is given by the Pythagorean theorem:

$\begin{array}{lll}{F}_{\text{app}}& =& \sqrt{{\text{F}}_{x}^{2}+{\text{F}}_{y}^{2}}\\ {F}_{\text{app}}& =& \sqrt{\left(2.7×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}{\right)}^{2}+\left(3.6×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}{\right)}^{2}}& =& 4.5×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N.}\end{array}$

The angle is given by

$\begin{array}{lll}\theta & =& {\text{tan}}^{-1}\left(\frac{{F}_{y}}{{F}_{x}}\right)\\ \theta & =& {\text{tan}}^{-1}\left(\frac{3.6×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}}{2.7×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}}\right)=\text{53º},\end{array}$

which we know, because of Newton’s first law, is the same direction as the acceleration. ${\mathbf{\text{F}}}_{\text{D}}$ is in the opposite direction of ${\mathbf{\text{F}}}_{\text{app}}$ , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as ${\mathbf{\text{F}}}_{\text{app}}$ , but its magnitude is slightly less than ${\mathbf{\text{F}}}_{\text{app}}$ . The problem is now one-dimensional. From [link] (b) , we can see that

${F}_{\text{net}}={F}_{\text{app}}-{F}_{\text{D}}.$

But Newton’s second law states that

${F}_{\text{net}}=\text{ma}.$

Thus,

${F}_{\text{app}}-{F}_{\text{D}}=\text{ma}.$

This can be solved for the magnitude of the drag force of the water ${F}_{\text{D}}$ in terms of known quantities:

${F}_{\text{D}}={F}_{\text{app}}-\text{ma}.$

Substituting known values gives

${\text{F}}_{\text{D}}=\left(4\text{.}\text{5}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}\right)-\left(5\text{.}\text{0}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{kg}\right)\left(7\text{.}\text{5}×{\text{10}}^{\text{–2}}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}\right)=7\text{.}\text{5}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N}.$

The direction of ${\mathbf{\text{F}}}_{\text{D}}$ has already been determined to be in the direction opposite to ${\mathbf{\text{F}}}_{\text{app}}$ , or at an angle of $\text{53º}$ south of west.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!