<< Chapter < Page Chapter >> Page >
This text is designed to acquaint students with the physical, ecological, social, and political principles of environmental science. Scientific method is used to analyze and understand the interrelationships between humans and the natural environment. This test shows how ecological realities and the material desire of humans often clash, leading to environmental degradation and pollution.

The flow of energy 

Introduction

Energy is the ability to do work . Work is done when a force is applied to an object over a distance. Any moving object has kinetic energy or energy of motion, and it thus can do work. Similarly, work has to be done on an object to change its kinetic energy. The kinetic energy of an object of mass m size 12{m} {} and speed v size 12{v} {} is given by the relation E = 1 / 2 mv 2 size 12{E=1/2 ital "mv" rSup { size 8{2} } } {} .

Sometimes energy can be stored and used at a later time. For example, a compressed spring and water held back by a dam both have the potential to do work. They are said to possess potential energy . When the spring or water is released its potential energy is transformed into kinetic energy and other forms of energy such as heat. The energy associated to the gravitational force near the surface of the earth is potential energy. Other forms of energy are really combinations of kinetic and potential energy. Chemical energy, for example, is the electrical potential energy stored in atoms. Heat energy is a combination of the potential and kinetic energy of the particles in a substance.

Forms of energy

Mechanical energy puts something in motion. It moves cars and lifts elevators. A machine uses mechanical energy to do work. The mechanical energy of a system is the sum of its kinetic and potential energy. Levers, which need a fulcrum to operate, are the simplest type of machine. Wheels, pulleys and inclined planes are the basic elements of most machines. 

Chemical energy is the energy stored in molecules and chemical compounds, and is found in food, wood, coal, petroleum and other fuels. When the chemical bonds are broken, either by combustion or other chemical reactions, the stored chemical energy is released in the form of heat or light. For example, muscle cells contain glycogen. When the muscle does work the glycogen is broken down into glucose. When the chemical energy in the glucose is transferred to the muscle fibers some of the energy goes into the surroundings as heat.

Electrical energy is produced when unbalanced forces between electrons and protons in atoms create moving electrons called electric currents. For example, when we spin a copper wire through the poles of a magnet we induce the motion of electrons in the wire and produce electricity. Electricity can be used to perform work such as lighting a bulb, heating a cooking element on a stove or powering a motor. Note that electricity is a "secondary" source of energy. That means other sources of energy are needed to produce electricity.

 

Radiant energy is carried by waves. Changes in the internal energy of particles cause the atoms to emit energy in the form of electromagnetic radiation which includes visible light, ultraviolet (UV) radiation, infrared (IR) radiation, microwaves, radio waves, gamma rays, and X-rays. Electromagnetic radiation from the sun, particularly light, is of utmost importance in environmental systems because biogeochemical cycles and virtually all other processes on earth are driven by them.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ap environmental science. OpenStax CNX. Sep 25, 2009 Download for free at http://cnx.org/content/col10548/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ap environmental science' conversation and receive update notifications?

Ask