# Boolean networks  (Page 2/3)

 Page 2 / 3

## Boolean networks

The Boolean network model, introduced by Kauffman (Kauffman, 1969, 1974; Kauffman and Glass, 1973)and recently developed by Shmulevich(Shmulevich, 2002), has received the most attention, not only from the biology community, but also in physics. In this model, gene expression is quantized to only two levels: ON and OFF. The expression level (state) of each gene is functionally related to the expression states of some other genes, using logical rules. A Boolean network G(V,F) is defined by a set of nodes corresponding to genes V = {x1, . . . , xn} and a list of Boolean functions F = (f1, . . . , fn) . The state of a node (gene) is completely determined by the values of other nodes at time t by means of underlying logical Boolean functions. The model is represented in the form of directed graph.Each xi represents the state (expression) of gene i, where xi=1 represents the fact that gene i is expressed and xi=0 means it is not expressed. The list of Boolean functions F represents the rules of regulatory interactions between genes. That is, any given gene transforms its inputs (regulatory factors that bind to it) into an output, which is the state or expression of the gene itself. The maximum connectivity of a Boolean network is defined by K= maxi (ki) . All genes are assumed to update synchronously in accordance with the functions assigned to them and this process is then repeated. The artificial synchrony simplifies computation while preserving the qualitative, generic properties of global network dynamics (Kauffman, 1993; Huang, 1999; Wuensche, 1998).

Below the example is presented. Consider a Boolean network consisting of 5 genes {x1, . . . , x5} with the corresponding Boolean functions given by the truth tables shown in Figure1. The maximum connectivity is K=3, although we allow some input variables to duplicate, essentially reducing the connectivity.The dynamics of this Boolean network are shown in Figure2. Since there are 5 genes, there are 2^5 = 32 possible states that the network can be in. Each state is represented by a circle and the arrows between states show the transitions of the network according to the functions in Table 1., Figure1. . It is easy to see that because of the inherent deterministic directionality in Boolean networks as well as only a finite number of possible states.

In the context of Boolean networks as models of genetic regulatory networks, there is no doubt that the binary approximation of gene expression is an oversimplification (Huang, 1999). However, even though most biological phenomena manifest themselves in the continuous domain, they are often described in a binary logical language such as‘on and off,’‘upregulated and downregulated’, and‘responsive and nonresponsive.’There is a several examples showing that a Boolean formalism is meaningful in biology, in (Shmulevich and Zhang, 2002), one reasoned that if the genes, when quantized to only two levels (1 or 0), would not be informative in separating known sub-classes of tumors, then there would be little hope for Boolean modeling of realistic genetic networks based on gene expression data.

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!