<< Chapter < Page Chapter >> Page >

ipoisson.m Poisson distribution — individual terms. As in the case of the binomial distribution, we have an m-function for the individualterms and one for the cumulative case. The m-functions ipoisson and cpoisson use a computational strategy similar to that used for the binomial case. Not only does this workfor large μ , but the precision is at least as good as that for the binomial m-functions. Experience indicates that the m-functions are good for μ 700 . They breaks down at about 710, largely because of limitations of the MATLAB exponentialfunction. For individual terms, function y = ipoisson(mu,k) calculates the probabilities for m u a positive integer, k a row or column vector of nonnegative integers. The output is a row vector of the corresponding Poisson probabilities.

function y = ipoisson(mu,k) % IPOISSON y = ipoisson(mu,k) Individual Poisson probabilities% Version of 10/15/93 % mu = mean value% k may be a row or column vector of integer values % y = P(X = k) (a row vector of probabilities)K = max(k); p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]);y = p(k+1);
Got questions? Get instant answers now!

cpoisson.m Poisson distribution—cumulative terms. function y = cpoisson(mu,k) , calculates P ( X k ) , where k may be a row or a column vector of nonnegative integers. The output is a row vector of the corresponding probabilities.

function y = cpoisson(mu,k) % CPOISSON y = cpoisson(mu,k) Cumulative Poisson probabilities% Version of 10/15/93 % mu = mean value mu% k may be a row or column vector of integer values % y = P(X>= k) (a row vector of probabilities) K = max(k);p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]); pc = [1 1 - cumsum(p)]; y = pc(k+1);
Got questions? Get instant answers now!

nbinom.m Negative binomial — function y = nbinom(m, p, k) calculates the probability that the m th success in a Bernoulli sequence occurs on the k th trial.

function y = nbinom(m, p, k) % NBINOM y = nbinom(m, p, k) Negative binomial probabilities% Version of 12/10/92 % Probability the mth success occurs on the kth trial% m a positive integer; p a probability % k a matrix of integers greater than or equal to m% y = P(X=k) (a matrix of the same dimensions as k) q = 1 - p;y = ((p^m)/gamma(m)).*(q.^(k - m)).*gamma(k)./gamma(k - m + 1);
Got questions? Get instant answers now!

gaussian.m function y = gaussian(m, v, t) calculates the Gaussian (Normal) distribution function for mean value m , variance v , and matrix t of values. The result y = P ( X t ) is a matrix of the same dimensions as t .

function y = gaussian(m,v,t) % GAUSSIAN y = gaussian(m,v,t) Gaussian distribution function% Version of 11/18/92 % Distribution function for X ~ N(m, v)% m = mean, v = variance % t is a matrix of evaluation points% y = P(X<=t) (a matrix of the same dimensions as t) u = (t - m)./sqrt(2*v);if u>= 0 y = 0.5*(erf(u) + 1);else y = 0.5*erfc(-u);end
Got questions? Get instant answers now!

gaussdensity.m function y = gaussdensity(m,v,t) calculates the Gaussian density function f X ( t ) for mean value m , variance t , and matrix t of values.

function y = gaussdensity(m,v,t) % GAUSSDENSITY y = gaussdensity(m,v,t) Gaussian density% Version of 2/8/96 % m = mean, v = variance% t is a matrix of evaluation points y = exp(-((t-m).^2)/(2*v))/sqrt(v*2*pi);
Got questions? Get instant answers now!

Questions & Answers

I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive
Samson Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?