# Appendix a to applied probability: directory of m-functions and m  (Page 10/24)

 Page 10 / 24

ipoisson.m Poisson distribution — individual terms. As in the case of the binomial distribution, we have an m-function for the individualterms and one for the cumulative case. The m-functions ipoisson and cpoisson use a computational strategy similar to that used for the binomial case. Not only does this workfor large μ , but the precision is at least as good as that for the binomial m-functions. Experience indicates that the m-functions are good for $\mu \le 700$ . They breaks down at about 710, largely because of limitations of the MATLAB exponentialfunction. For individual terms, function y = ipoisson(mu,k) calculates the probabilities for $mu$ a positive integer, k a row or column vector of nonnegative integers. The output is a row vector of the corresponding Poisson probabilities.

function y = ipoisson(mu,k) % IPOISSON y = ipoisson(mu,k) Individual Poisson probabilities% Version of 10/15/93 % mu = mean value% k may be a row or column vector of integer values % y = P(X = k) (a row vector of probabilities)K = max(k); p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]);y = p(k+1);

cpoisson.m Poisson distribution—cumulative terms. function y = cpoisson(mu,k) , calculates $P\left(X\ge k\right)$ , where k may be a row or a column vector of nonnegative integers. The output is a row vector of the corresponding probabilities.

function y = cpoisson(mu,k) % CPOISSON y = cpoisson(mu,k) Cumulative Poisson probabilities% Version of 10/15/93 % mu = mean value mu% k may be a row or column vector of integer values % y = P(X>= k) (a row vector of probabilities) K = max(k);p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]); pc = [1 1 - cumsum(p)]; y = pc(k+1);

nbinom.m Negative binomial — function y = nbinom(m, p, k) calculates the probability that the m th success in a Bernoulli sequence occurs on the k th trial.

function y = nbinom(m, p, k) % NBINOM y = nbinom(m, p, k) Negative binomial probabilities% Version of 12/10/92 % Probability the mth success occurs on the kth trial% m a positive integer; p a probability % k a matrix of integers greater than or equal to m% y = P(X=k) (a matrix of the same dimensions as k) q = 1 - p;y = ((p^m)/gamma(m)).*(q.^(k - m)).*gamma(k)./gamma(k - m + 1);

gaussian.m function y = gaussian(m, v, t) calculates the Gaussian (Normal) distribution function for mean value m , variance v , and matrix t of values. The result $y=P\left(X\le t\right)$ is a matrix of the same dimensions as t .

function y = gaussian(m,v,t) % GAUSSIAN y = gaussian(m,v,t) Gaussian distribution function% Version of 11/18/92 % Distribution function for X ~ N(m, v)% m = mean, v = variance % t is a matrix of evaluation points% y = P(X<=t) (a matrix of the same dimensions as t) u = (t - m)./sqrt(2*v);if u>= 0 y = 0.5*(erf(u) + 1);else y = 0.5*erfc(-u);end

gaussdensity.m function y = gaussdensity(m,v,t) calculates the Gaussian density function ${f}_{X}\left(t\right)$ for mean value m , variance t , and matrix t of values.

function y = gaussdensity(m,v,t) % GAUSSDENSITY y = gaussdensity(m,v,t) Gaussian density% Version of 2/8/96 % m = mean, v = variance% t is a matrix of evaluation points y = exp(-((t-m).^2)/(2*v))/sqrt(v*2*pi);

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive