<< Chapter < Page Chapter >> Page >

cdbn.m Plots a continuous graph of a distribution function of a simple random variable (or simple approximation).

% CDBN file cdbn.m Continuous graph of distribution function % Version of 1/29/97% Plots continuous graph of dbn function FX from % distribution of simple rv (or simple approximation)xc = input('Enter row matrix of VALUES '); pc = input('Enter row matrix of PROBABILITIES ');m = length(xc); FX = cumsum(pc);xt = [xc(1)-0.01 xc xc(m)+0.01];FX = [0 FX FX(m)]; % Artificial extension of range and domainplot(xt,FX) % Plot of continuous graph gridxlabel('t') ylabel('u = F(t)')title('Distribution Function')
Got questions? Get instant answers now!

simple.m Calculates basic quantites for simple random variables from the distribution, input as row matrices X and P X .

% SIMPLE file simple.m Calculates basic quantites for simple rv % Version of 6/18/95X = input('Enter row matrix of X-values '); PX = input('Enter row matrix PX of X probabilities ');n = length(X); % dimension of X EX = dot(X,PX) % E[X]EX2 = dot(X.^2,PX) % E[X^2] VX = EX2 - EX^2 % Var[X]disp(' ') disp('Use row matrices X and PX for further calculations')
Got questions? Get instant answers now!

jddbn.m Representation of joint distribution function for simple pair by obtaining the value of F X Y at the lower left hand corners of each grid cell.

% JDDBN file jddbn.m Joint distribution function % Version of 10/7/96% Joint discrete distribution function for % joint matrix P (arranged as on the plane).% Values at lower left hand corners of grid cells P = input('Enter joint probability matrix (as on the plane) ');FXY = flipud(cumsum(flipud(P))); FXY = cumsum(FXY')';disp('To view corner values for joint dbn function, call for FXY')
Got questions? Get instant answers now!

jsimple.m Calculates basic quantities for a joint simple pair { X , Y } from the joint distrsibution X , Y , P as in jcalc. Calculated quantities include means, variances, covariance, regression line, and regression curve (conditional expectation E [ Y | X = t ] ).

% JSIMPLE file jsimple.m Calculates basic quantities for joint simple rv % Version of 5/25/95% The joint probabilities are arranged as on the plane % (the top row corresponds to the largest value of Y)P = input('Enter JOINT PROBABILITIES (as on the plane) '); X = input('Enter row matrix of VALUES of X ');Y = input('Enter row matrix of VALUES of Y '); disp(' ')PX = sum(P); % marginal distribution for X PY = fliplr(sum(P')); % marginal distribution for YXDBN = [X; PX]';YDBN = [Y; PY]';PT = idbn(PX,PY); D = total(abs(P - PT)); % test for differenceif D>1e-8 % to prevent roundoff error masking zero disp('{X,Y} is NOT independent')else disp('{X,Y} is independent')end disp(' ')[t,u] = meshgrid(X,fliplr(Y));EX = total(t.*P) % E[X] EY = total(u.*P) % E[Y]EX2 = total((t.^2).*P) % E[X^2] EY2 = total((u.^2).*P) % E[Y^2]EXY = total(t.*u.*P) % E[XY] VX = EX2 - EX^2 % Var[X]VY = EY2 - EY^2 % Var[Y] cv = EXY - EX*EY; % Cov[X,Y]= E[XY] - E[X]E[Y] if abs(cv)>1e-9 % to prevent roundoff error masking zero CV = cvelse CV = 0end a = CV/VX % regression line of Y on X isb = EY - a*EX % u = at + b R = CV/sqrt(VX*VY); % correlation coefficient rhodisp(['The regression line of Y on X is: u = ',num2str(a),'t + ',num2str(b),])disp(['The correlation coefficient is: rho = ',num2str(R),])disp(' ') eYx = sum(u.*P)./PX;EYX = [X;eYx]';disp('Marginal dbns are in X, PX, Y, PY; to view, call XDBN, YDBN') disp('E[Y|X = x]is in eYx; to view, call for EYX') disp('Use array operations on matrices X, Y, PX, PY, t, u, and P')
Got questions? Get instant answers now!

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive
Samson Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?