<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Draw angles in standard position.
  • Convert between degrees and radians.
  • Find coterminal angles.
  • Find the length of a circular arc.
  • Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure in many undertakings. In this section, we will examine properties of angles.

Drawing angles in standard position

Properly defining an angle first requires that we define a ray. A ray    consists of one point on a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to a specific ray by stating its endpoint and any other point on it. The ray in [link] can be named as ray EF, or in symbol form E F .

Illustration of Ray EF, with point F and endpoint E.

An angle    is the union of two rays having a common endpoint. The endpoint is called the vertex    of the angle, and the two rays are the sides of the angle. The angle in [link] is formed from E D and E F . Angles can be named using a point on each ray and the vertex, such as angle DEF , or in symbol form  ∠ D E F .

Illustration of Angle DEF, with vertex E and points D and F.

Greek letters are often used as variables for the measure of an angle. [link] is a list of Greek letters commonly used to represent angles, and a sample angle is shown in [link] .

θ φ or ϕ α β γ
theta phi alpha beta gamma
Illustration of angle theta.
Angle theta, shown as θ

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and rotate the other. The fixed ray is the initial side     , and the rotated ray is the terminal side    . In order to identify the different sides, we indicate the rotation with a small arc and arrow close to the vertex as in [link] .

Illustration of an angle with labels for initial side, terminal side, and vertex.

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them correctly, we must be able to measure them. The measure of an angle    is the amount of rotation from the initial side to the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree    is 1 360 of a circular rotation, so a complete circular rotation contains 360 degrees. An angle measured in degrees should always include the unit “degrees” after the number, or include the degree symbol °. For example, 90 degrees = 90°.

To formalize our work, we will begin by drawing angles on an x - y coordinate plane. Angles can occur in any position on the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position whenever possible. An angle is in standard position    if its vertex is located at the origin, and its initial side extends along the positive x -axis. See [link] .

Graph of an angle in standard position with labels for the initial side and terminal side.

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be a positive angle    . If the angle is measured in a clockwise direction, the angle is said to be a negative angle    .

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask