<< Chapter < Page Chapter >> Page >
Additive synthesis creates complex sounds by adding together individual sinusoidal signals called "partials." In this module you will learn how to synthesize audio waveforms by designing the frequency and amplitude trajectories of the partials. LabVIEW programming techniques for additive synthesis will also be introduced in two examples.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
• Apply LabVIEW to Audio Signal Processing
• Get started with LabVIEW
• Obtain a fully-functional evaluation edition of LabVIEW

Overview

Additive synthesis creates complex sounds by adding together individual sinusoidal signals called partials . The prerequisite module Additive Synthesis Concepts reviews the main concepts of additive synthesis. In this module you will learn how to synthesize audio waveforms by designing the frequency and amplitude trajectories of the partials. Also, LabVIEW programming techniques for additivesynthesis will be introduced in two examples.

Frequency and amplitude trajectory design

A partial is the fundamental building block of additive synthesis. A partial is a single sinusoidal component whose amplitude and frequency are each time-varying. The time-varying amplitude denoted a ( t ) is called the amplitude trajectory and the time-varying frequency denoted f ( t ) is called the frequency trajectory . Additive synthesis requires the design of both trajectories for each partial; the partials are then summed together to create the sound.

The screencast video of [link] shows how to begin the design of a sound as a spectrogram plot, how to design the amplitude trajectory first as an intensity (loudness) trajectory in "log space" using decibels, and how to design the frequency trajectory in"log space" using octaves. Designing the partials in log space accounts for hearing perception which is logarithmic in both intensity and in frequency; refer to Perception of Sound for a detailed treatment of this subject.

[video] Design of frequency and amplitude trajectories

Example 1: fractal partials

In this first example, partials are created during a fixed time interval and then concatenated to create the overall sound. During the firsttime interval a single partial is created at a reference frequency. During the second time interval the partial's frequency linearly increases in "octave space" from the reference frequency to a frequency two octaves abovethe reference frequency. In the third interval the partial bifurcates into two partials, where one increases by an octave and the other decreases by an octave. In the fourth interval, each of the two partials bifurcates again to make a total offour partials, each increasing or decreasing by half an octave. This behavior repeats in each subsequent time interval, doubling the number of partials, and halving the amount of frequency increase or decrease.

The screencast video of [link] shows how the frequency trajectories are designed in "octave space", and then reviews the key LabVIEWprogramming techniques needed to implement this design. The video also includes an audio demonstration so you can hear the design of this "audible fractal."

The LabVIEW VI demonstrated within the video is available here: genfnc.zip . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Design of the "audible fractal," LabVIEW implementation, and audio demonstration

Example 2: spectrogram art

The design of a sound using additive synthesis typically begins with a spectrogram representation of the desired sound. In this second example, straight line segments define the frequency trajectories of nine distinct partials that create a spectrum of a recognizable object, specifically, a cartoon drawing ofan individual who is happy to be wearing a French beret.

The screencast video of [link] shows how the frequency trajectories are designed in "octave space" and specified according to the coordinates of the line segment endpoints. The design of the corresponding amplitude trajectories necessary to make the partials start and stop at the correct timesis likewise discussed. Key LabVIEW programming techniques needed to implement this design and an audio demonstration are also presented.

The LabVIEW VI demonstrated within the video is available here: face.zip . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Design of the cartoon face, LabVIEW implementation, and audio demonstration

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Musical signal processing with labview (all modules). OpenStax CNX. Jan 05, 2010 Download for free at http://cnx.org/content/col10507/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview (all modules)' conversation and receive update notifications?

Ask