<< Chapter < Page Chapter >> Page >

Air conditioners and refrigerators

Air conditioners and refrigerators are designed to cool something down in a warm environment. As with heat pumps, work input is required for heat transfer from cold to hot, and this is expensive. The quality of air conditioners and refrigerators is judged by how much heat transfer Q c size 12{Q rSub { size 8{c} } } {} occurs from a cold environment compared with how much work input W size 12{W} {} is required. What is considered the benefit in a heat pump is considered waste heat in a refrigerator. We thus define the coefficient of performance     (COP ref ) size 12{ ital "COP" rSub { size 8{"ref"} } } {} of an air conditioner or refrigerator to be

COP ref = Q c W . size 12{ ital "COP" rSub { size 8{ ital "ref"} } = { {Q rSub { size 8{c} } } over {W} } "." } {}

Noting again that Q h = Q c + W size 12{Q rSub { size 8{h} } =Q rSub { size 8{c} } +W} {} , we can see that an air conditioner will have a lower coefficient of performance than a heat pump, because COP hp = Q h / W size 12{ ital "COP" rSub { size 8{"hp"} } =Q rSub { size 8{h} } /W} {} and Q h size 12{Q rSub { size 8{h} } } {} is greater than Q c size 12{Q rSub { size 8{c} } } {} . In this module’s Problems and Exercises, you will show that

COP ref = COP hp 1 size 12{ ital "COP" rSub { size 8{"ref"} } = ital "COP" rSub { size 8{"hp"} } - 1} {}

for a heat engine used as either an air conditioner or a heat pump operating between the same two temperatures. Real air conditioners and refrigerators typically do remarkably well, having values of COP ref size 12{ ital "COP" rSub { size 8{"ref"} } } {} ranging from 2 to 6. These numbers are better than the COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} values for the heat pumps mentioned above, because the temperature differences are smaller, but they are less than those for Carnot engines operating between the same two temperatures.

A type of COP size 12{ ital "COP"} {} rating system called the “energy efficiency rating” ( EER size 12{ ital "EER"} {} ) has been developed. This rating is an example where non-SI units are still used and relevant to consumers. To make it easier for the consumer, Australia, Canada, New Zealand, and the U.S. use an Energy Star Rating out of 5 stars—the more stars, the more energy efficient the appliance. EER s size 12{ ital "EER"} {} are expressed in mixed units of British thermal units (Btu) per hour of heating or cooling divided by the power input in watts. Room air conditioners are readily available with EER s size 12{ ital "EER"} {} ranging from 6 to 12. Although not the same as the COP s size 12{ ital "COP"} {} just described, these EER s size 12{ ital "EER"} {} are good for comparison purposes—the greater the EER size 12{ ital "EER"} {} , the cheaper an air conditioner is to operate (but the higher its purchase price is likely to be).

The EER { ital "EER"s} {} of an air conditioner or refrigerator can be expressed as

EER = Q c / t 1 W / t 2 , { ital "EER"= { {Q rSub { {c} } /t rSub { {1} } } over {W/t rSub { size 8{2} } } } ,} {}

where Q c {Q rSub { {c} } } {} is the amount of heat transfer from a cold environment in British thermal units, t 1 {Q rSub { {c} } } {} is time in hours, W {W} {} is the work input in joules, and t 2 is time in seconds.

Problem-solving strategies for thermodynamics

  1. Examine the situation to determine whether heat, work, or internal energy are involved . Look for any system where the primary methods of transferring energy are heat and work. Heat engines, heat pumps, refrigerators, and air conditioners are examples of such systems.
  2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.
  3. Identify exactly what needs to be determined in the problem (identify the unknowns) . A written list is useful. Maximum efficiency means a Carnot engine is involved. Efficiency is not the same as the coefficient of performance.
  4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns) . Be sure to distinguish heat transfer into a system from heat transfer out of the system, as well as work input from work output. In many situations, it is useful to determine the type of process, such as isothermal or adiabatic.
  5. Solve the appropriate equation for the quantity to be determined (the unknown).
  6. Substitute the known quantities along with their units into the appropriate equation and obtain numerical solutions complete with units.
  7. Check the answer to see if it is reasonable: Does it make sense? For example, efficiency is always less than 1, whereas coefficients of performance are greater than 1.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask