<< Chapter < Page Chapter >> Page >

The best COP hp Of a heat pump for home use

A heat pump used to warm a home must employ a cycle that produces a working fluid at temperatures greater than typical indoor temperature so that heat transfer to the inside can take place. Similarly, it must produce a working fluid at temperatures that are colder than the outdoor temperature so that heat transfer occurs from outside. Its hot and cold reservoir temperatures therefore cannot be too close, placing a limit on its COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} . (See [link] .) What is the best coefficient of performance possible for such a heat pump, if it has a hot reservoir temperature of 45 . 0 º C size 12{"45" "." 0°C} {} and a cold reservoir temperature of 15 . 0 º C size 12{-"15" "." 0°C} {} ?


A Carnot engine reversed will give the best possible performance as a heat pump. As noted above, COP hp = 1 / Eff size 12{ ital "COP" rSub { size 8{"hp"} } =1/ ital "Eff"} {} , so that we need to first calculate the Carnot efficiency to solve this problem.


Carnot efficiency in terms of absolute temperature is given by :

Eff C = 1 T c T h . size 12{ ital "Eff" rSub { size 8{C} } =1 - { {T rSub { size 8{c} } } over {T rSub { size 8{h} } } } } {}

The temperatures in kelvins are T h = 318 K size 12{T rSub { size 8{h} } ="318"" K"} {} and T c = 258 K size 12{T rSub { size 8{c} } ="258"" K"} {} , so that

Eff C = 1 258 K 318 K = 0 . 1887 . size 12{ ital "Eff" rSub { size 8{C} } =1 - { {"258"" K"} over {"318 K"} } =0 "." "1887"} {}

Thus, from the discussion above,

COP hp = 1 Eff = 1 0 . 1887 = 5 . 30 , size 12{ ital "COP" rSub { size 8{"hp"} } = { {1} over { ital "Eff"} } = { {1} over {0 "." "1887"} } =5 "." "30",} {}


COP hp = Q h W = 5 . 30 , size 12{ ital "COP" rSub { size 8{"hp"} } = { {Q rSub { size 8{h} } } over {W} } =5 "." "30",} {}

so that

Q h = 5.30 W . size 12{Q rSub { size 8{h} } =5 "." "30"" W" "." } {}


This result means that the heat transfer by the heat pump is 5.30 times as much as the work put into it. It would cost 5.30 times as much for the same heat transfer by an electric room heater as it does for that produced by this heat pump. This is not a violation of conservation of energy. Cold ambient air provides 4.3 J per 1 J of work from the electrical outlet.

The figure shows a schematic diagram of a heat pump. The hot and cold reservoirs are shown as two rectangular boxes attached to a vertical rectangular wall. The hot reservoir is at temperature T sub c equals negative fifteen degrees Celsius and the hot reservoir is at a temperature T sub h equals forty five degrees Celsius. Work W is shown to enter from an electrical outlet. Heat Q sub c is shown to enter the cold reservoir at an outside air temperature of negative five degrees Celsius and Q sub h is shown to leave the hot reservoir at an inside air temperature of twenty degrees Celsius.
Heat transfer from the outside to the inside, along with work done to run the pump, takes place in the heat pump of the example above . Note that the cold temperature produced by the heat pump is lower than the outside temperature, so that heat transfer into the working fluid occurs. The pump’s compressor produces a temperature greater than the indoor temperature in order for heat transfer into the house to occur.

Real heat pumps do not perform quite as well as the ideal one in the previous example; their values of COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} range from about 2 to 4. This range means that the heat transfer Q h size 12{Q rSub { size 8{h} } } {} from the heat pumps is 2 to 4 times as great as the work W size 12{W} {} put into them. Their economical feasibility is still limited, however, since W size 12{W} {} is usually supplied by electrical energy that costs more per joule than heat transfer by burning fuels like natural gas. Furthermore, the initial cost of a heat pump is greater than that of many furnaces, so that a heat pump must last longer for its cost to be recovered. Heat pumps are most likely to be economically superior where winter temperatures are mild, electricity is relatively cheap, and other fuels are relatively expensive. Also, since they can cool as well as heat a space, they have advantages where cooling in summer months is also desired. Thus some of the best locations for heat pumps are in warm summer climates with cool winters. [link] shows a heat pump, called a “ reverse cycle” or “ split-system cooler” in some countries.

A residential heat pump.
In hot weather, heat transfer occurs from air inside the room to air outside, cooling the room. In cool weather, heat transfer occurs from air outside to air inside, warming the room. This switching is achieved by reversing the direction of flow of the working fluid.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?