# 9.4 Rotational kinetic energy: work and energy revisited  (Page 2/9)

 Page 2 / 9
${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}.$

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with $I$ being analogous to $m$ and $\omega$ to $v$ . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of rotational kinetic energy in a vehicle, as seen in [link] . Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . It can also convert translational kinetic energy, when the bus stops, into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . The flywheel’s energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

## Calculating the work and energy for spinning a grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a revolution as shown in [link] . In this example, we verify that the work done by the torque she exerts equals the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of $\text{1.00 rad}\left(57.3º\right)$ ? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation $\text{net}\phantom{\rule{0.25em}{0ex}}W=\left(\text{net τ}\right)\theta$ . We have enough information to calculate the torque and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In the last part, we can calculate the rotational kinetic energy from its expression in ${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}$ .

Solution for (a)

The net work is expressed in the equation

$\text{net}\phantom{\rule{0.25em}{0ex}}W=\left(\text{net τ}\right)\theta ,$

where net $\tau$ is the applied force multiplied by the radius $\left(\text{rF}\right)$ because there is no retarding friction, and the force is perpendicular to $r$ . The angle $\theta$ is given. Substituting the given values in the equation above yields

$\begin{array}{lll}\text{net}\phantom{\rule{0.25em}{0ex}}W& =& \text{rF}\theta =\left(\text{0.320 m}\right)\left(\text{200 N}\right)\left(\text{1.00 rad}\right)\\ & =& \text{64.0 N}\cdot \text{m.}\end{array}$

Noting that $1 N·\text{m}=1 J$ ,

$\text{net}\phantom{\rule{0.25em}{0ex}}W=\text{64.0 J}.$ A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find $\omega$ from the given information requires more than one step. We start with the kinematic relationship in the equation

${\omega }^{2}={{\omega }_{\text{0}}}^{2}+2\text{αθ}.$

Note that ${\omega }_{0}=0$ because we start from rest. Taking the square root of the resulting equation gives

$\omega ={\left(2\text{αθ}\right)}^{1/2}.$

Now we need to find $\alpha$ . One possibility is

$\alpha =\frac{\text{net τ}}{I},$

where the torque is

$\text{net τ}=\text{rF}=\left(\text{0.320 m}\right)\left(\text{200 N}\right)=\text{64.0 N}\cdot \text{m}.$

The formula for the moment of inertia for a disk is found in [link] :

$I=\frac{1}{2}{\text{MR}}^{2}=0.5\left(\text{85.0 kg}\right){\left(\text{0.320 m}\right)}^{2}=\text{4.352 kg}\cdot {\text{m}}^{2}.$

Substituting the values of torque and moment of inertia into the expression for $\alpha$ , we obtain

$\alpha =\frac{\text{64}\text{.}\text{0 N}\cdot \text{m}}{\text{4.352 kg}\cdot {\text{m}}^{2}}=\text{14.7}\frac{\text{rad}}{{\text{s}}^{2}}.$

Now, substitute this value and the given value for $\theta$ into the above expression for $\omega$ :

$\omega ={\left(2\text{αθ}\right)}^{1/2}={\left[2\left(\text{14.7}\frac{\text{rad}}{{\text{s}}^{2}}\right)\left(\text{1.00 rad}\right)\right]}^{1/2}=\text{5.42}\frac{\text{rad}}{\text{s}}.$

Solution for (c)

The final rotational kinetic energy is

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
Got questions? Join the online conversation and get instant answers!

#### Get Jobilize Job Search Mobile App in your pocket Now! By Yasser Ibrahim By OpenStax By David Martin By OpenStax By By OpenStax By Anh Dao By Sam Luong By Brooke Delaney By OpenStax