# 9.4 Division of square root expressions

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The distinction between the principal square root of the number x and the secondary square root of the number x is made by explanation and by example. The simplification of the radical expressions that both involve and do not involve fractions is shown in many detailed examples; this is followed by an explanation of how and why radicals are eliminated from the denominator of a radical expression. Real-life applications of radical equations have been included, such as problems involving daily output, daily sales, electronic resonance frequency, and kinetic energy.Objectives of this module: be able to use the division property of square roots, the method of rationalizing the denominator, and conjugates to divide square roots.

## Overview

• The Division Property of Square Roots
• Rationalizing the Denominator
• Conjugates and Rationalizing the Denominator

## The division property of square roots

In our work with simplifying square root expressions, we noted that

$\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}$

Since this is an equation, we may write it as

$\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$

To divide two square root expressions, we use the division property of square roots.

## The division property $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$

$\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$

The quotient of the square roots is the square root of the quotient.

## Rationalizing the denominator

As we can see by observing the right side of the equation governing the division of square roots, the process may produce a fraction in the radicand. This means, of course, that the square root expression is not in simplified form. It is sometimes more useful to rationalize the denominator of a square root expression before actually performing the division.

## Sample set a

Simplify the square root expressions.

$\sqrt{\frac{3}{7}}.$

This radical expression is not in simplified form since there is a fraction under the radical sign. We can eliminate this problem using the division property of square roots.

$\sqrt{\frac{3}{7}}=\frac{\sqrt{3}}{\sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}}·\frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{3}\sqrt{7}}{7}=\frac{\sqrt{21}}{7}$

$\frac{\sqrt{5}}{\sqrt{3}}.$

A direct application of the rule produces $\sqrt{\frac{5}{3}},$ which must be simplified. Let us rationalize the denominator before we perform the division.

$\frac{\sqrt{5}}{\sqrt{3}}=\frac{\sqrt{5}}{\sqrt{3}}·\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{5}\sqrt{3}}{3}=\frac{\sqrt{15}}{3}$

$\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{\frac{21}{7}}=\sqrt{3}.$

The rule produces the quotient quickly. We could also rationalize the denominator first and produce the same result.

$\frac{\sqrt{21}}{\sqrt{7}}=\frac{\sqrt{21}}{7}·\frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{21·7}}{7}=\frac{\sqrt{3·7·7}}{7}=\frac{\sqrt{3·{7}^{2}}}{7}=\frac{7\sqrt{3}}{7}=\sqrt{3}$

$\frac{\sqrt{80{x}^{9}}}{\sqrt{5{x}^{4}}}=\sqrt{\frac{80{x}^{9}}{5{x}^{4}}}=\sqrt{16{x}^{5}}=\sqrt{16}\sqrt{{x}^{4}x}=4{x}^{2}\sqrt{x}$

$\frac{\sqrt{50{a}^{3}{b}^{7}}}{\sqrt{5a{b}^{5}}}=\sqrt{\frac{50{a}^{3}{b}^{7}}{5a{b}^{5}}}=\sqrt{10{a}^{2}{b}^{2}}=ab\sqrt{10}$

$\frac{\sqrt{5a}}{\sqrt{b}}.$

Some observation shows that a direct division of the radicands will produce a fraction. This suggests that we rationalize the denominator first.

$\frac{\sqrt{5a}}{\sqrt{b}}=\frac{\sqrt{5a}}{\sqrt{b}}·\frac{\sqrt{b}}{\sqrt{b}}=\frac{\sqrt{5a}\sqrt{b}}{b}=\frac{\sqrt{5ab}}{b}$

$\frac{\sqrt{m-6}}{\sqrt{m+2}}=\frac{\sqrt{m-6}}{\sqrt{m+2}}·\frac{\sqrt{m+2}}{\sqrt{m+2}}=\frac{\sqrt{{m}^{2}-4m-12}}{m+2}$

$\frac{\sqrt{{y}^{2}-y-12}}{\sqrt{y+3}}=\sqrt{\frac{{y}^{2}-y-12}{y+3}}=\sqrt{\frac{\left(y+3\right)\left(y-4\right)}{\left(y+3\right)}}=\sqrt{\frac{\overline{)\left(y+3\right)}\left(y-4\right)}{\overline{)\left(y+3\right)}}}=\sqrt{y-4}$

## Practice set a

Simplify the square root expressions.

$\frac{\sqrt{26}}{\sqrt{13}}$

$\sqrt{2}$

$\frac{\sqrt{7}}{\sqrt{3}}$

$\frac{\sqrt{21}}{3}$

$\frac{\sqrt{80{m}^{5}{n}^{8}}}{\sqrt{5{m}^{2}n}}$

$4m{n}^{3}\sqrt{mn}$

$\frac{\sqrt{196{\left(x+7\right)}^{8}}}{\sqrt{2{\left(x+7\right)}^{3}}}$

$7{\left(x+7\right)}^{2}\sqrt{2\left(x+7\right)}$

$\frac{\sqrt{n+4}}{\sqrt{n-5}}$

$\frac{\sqrt{{n}^{2}-n-20}}{n-5}$

$\frac{\sqrt{{a}^{2}-6a+8}}{\sqrt{a-2}}$

$\sqrt{a-4}$

$\frac{\sqrt{{x}^{3}{}^{n}}}{\sqrt{{x}^{n}}}$

${x}^{n}$

$\frac{\sqrt{{a}^{3m-5}}}{\sqrt{{a}^{m-1}}}$

${a}^{m-2}$

## Conjugates and rationalizing the denominator

To perform a division that contains a binomial in the denominator, such as $\frac{3}{4+\sqrt{6}},$ we multiply the numerator and denominator by a conjugate of the denominator.

## Conjugate

A conjugate of the binomial $a+b$ is $a-b$ . Similarly, a conjugate of $a-b$ is $a+b$ .

Notice that when the conjugates $a+b$ and $a-b$ are multiplied together, they produce a difference of two squares.

$\left(a+b\right)\left(a-b\right)={a}^{2}-ab+ab-{b}^{2}={a}^{2}-{b}^{2}$

This principle helps us eliminate square root radicals, as shown in these examples that illustrate finding the product of conjugates.

$\begin{array}{lll}\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)\hfill & =\hfill & {5}^{2}-{\left(\sqrt{2}\right)}^{2}\hfill \\ \hfill & =\hfill & 25-2\hfill \\ \hfill & =\hfill & 23\hfill \end{array}$

$\begin{array}{lll}\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)\hfill & =\hfill & {\left(\sqrt{6}\right)}^{2}-{\left(\sqrt{7}\right)}^{2}\hfill \\ \hfill & =\hfill & 6-7\hfill \\ \hfill & =\hfill & -1\hfill \end{array}$

## Sample set b

Simplify the following expressions.

$\frac{3}{4+\sqrt{6}}$ .

The conjugate of the denominator is $4-\sqrt{6.}$ Multiply the fraction by 1 in the form of $\frac{4-\sqrt{6}}{4-\sqrt{6}}$ . $\begin{array}{lll}\frac{3}{4+\sqrt{6}}·\frac{4-\sqrt{6}}{4-\sqrt{6}}\hfill & =\hfill & \frac{3\left(4-\sqrt{6}\right)}{{4}^{2}-{\left(\sqrt{6}\right)}^{2}}\hfill \\ \hfill & =\hfill & \frac{12-3\sqrt{6}}{16-6}\hfill \\ \hfill & =\hfill & \frac{12-3\sqrt{6}}{10}\hfill \end{array}$

$\frac{\sqrt{2x}}{\sqrt{3}-\sqrt{5x}}.$

The conjugate of the denominator is $\sqrt{3}+\sqrt{5x.}$ Multiply the fraction by 1 in the form of $\frac{\sqrt{3}+\sqrt{5x}}{\sqrt{3}+\sqrt{5x}}.$

$\begin{array}{lll}\frac{\sqrt{2x}}{\sqrt{3}-\sqrt{5x}}·\frac{\sqrt{3}+\sqrt{5x}}{\sqrt{3}+\sqrt{5x}}\hfill & =\hfill & \frac{\sqrt{2x}\left(\sqrt{3}+\sqrt{5x}\right)}{{\left(\sqrt{3}\right)}^{2}-{\left(\sqrt{5x}\right)}^{2}}\hfill \\ \hfill & =\hfill & \frac{\sqrt{2x}\sqrt{3}+\sqrt{2x}\sqrt{5x}}{3-5x}\hfill \\ \hfill & =\hfill & \frac{\sqrt{6x}+\sqrt{10{x}^{2}}}{3-5x}\hfill \\ \hfill & =\hfill & \frac{\sqrt{6x}+x\sqrt{10}}{3-5x}\hfill \end{array}$

## Practice set b

Simplify the following expressions.

$\frac{5}{9+\sqrt{7}}$

$\frac{45-5\sqrt{7}}{74}$

$\frac{-2}{1-\sqrt{3x}}$

$\frac{-2-2\sqrt{3x}}{1-3x}$

$\frac{\sqrt{8}}{\sqrt{3x}+\sqrt{2x}}$

$\frac{2\sqrt{6x}-4\sqrt{x}}{x}$

$\frac{\sqrt{2m}}{m-\sqrt{3m}}$

$\frac{\sqrt{2m}+\sqrt{6}}{m-3}$

## Exercises

For the following problems, simplify each expressions.

$\frac{\sqrt{28}}{\sqrt{2}}$

$\sqrt{14}$

$\frac{\sqrt{200}}{\sqrt{10}}$

$\frac{\sqrt{28}}{\sqrt{7}}$

2

$\frac{\sqrt{96}}{\sqrt{24}}$

$\frac{\sqrt{180}}{\sqrt{5}}$

6

$\frac{\sqrt{336}}{\sqrt{21}}$

$\frac{\sqrt{162}}{\sqrt{18}}$

3

$\sqrt{\frac{25}{9}}$

$\sqrt{\frac{36}{35}}$

$\frac{6\sqrt{35}}{35}$

$\sqrt{\frac{225}{16}}$

$\sqrt{\frac{49}{225}}$

$\frac{7}{15}$

$\sqrt{\frac{3}{5}}$

$\sqrt{\frac{3}{7}}$

$\frac{\sqrt{21}}{7}$

$\sqrt{\frac{1}{2}}$

$\sqrt{\frac{5}{2}}$

$\frac{\sqrt{10}}{2}$

$\sqrt{\frac{11}{25}}$

$\sqrt{\frac{15}{36}}$

$\frac{\sqrt{15}}{6}$

$\sqrt{\frac{5}{16}}$

$\sqrt{\frac{7}{25}}$

$\frac{\sqrt{7}}{5}$

$\sqrt{\frac{32}{49}}$

$\sqrt{\frac{50}{81}}$

$\frac{5\sqrt{2}}{9}$

$\frac{\sqrt{125{x}^{5}}}{\sqrt{5{x}^{3}}}$

$\frac{\sqrt{72{m}^{7}}}{\sqrt{2{m}^{3}}}$

$6{m}^{2}$

$\frac{\sqrt{162{a}^{11}}}{\sqrt{2{a}^{5}}}$

$\frac{\sqrt{75{y}^{10}}}{\sqrt{3{y}^{4}}}$

$5{y}^{3}$

$\frac{\sqrt{48{x}^{9}}}{\sqrt{3{x}^{2}}}$

$\frac{\sqrt{125{a}^{14}}}{\sqrt{5{a}^{5}}}$

$5{a}^{4}\sqrt{a}$

$\frac{\sqrt{27{a}^{10}}}{\sqrt{3{a}^{5}}}$

$\frac{\sqrt{108{x}^{21}}}{\sqrt{3{x}^{4}}}$

$6{x}^{8}\sqrt{x}$

$\frac{\sqrt{48{x}^{6}{y}^{7}}}{\sqrt{3xy}}$

$\frac{\sqrt{45{a}^{3}{b}^{8}{c}^{2}}}{\sqrt{5a{b}^{2}c}}$

$3a{b}^{3}\sqrt{c}$

$\frac{\sqrt{66{m}^{12}{n}^{15}}}{\sqrt{11m{n}^{8}}}$

$\frac{\sqrt{30{p}^{5}{q}^{14}}}{\sqrt{5{q}^{7}}}$

${p}^{2}{q}^{3}\sqrt{6pq}$

$\frac{\sqrt{b}}{\sqrt{5}}$

$\frac{\sqrt{5x}}{\sqrt{2}}$

$\frac{\sqrt{10x}}{2}$

$\frac{\sqrt{2{a}^{3}b}}{\sqrt{14a}}$

$\frac{\sqrt{3{m}^{4}{n}^{3}}}{\sqrt{6m{n}^{5}}}$

$\frac{m\sqrt{2m}}{2n}$

$\frac{\sqrt{5{\left(p-q\right)}^{6}{\left(r+s\right)}^{4}}}{\sqrt{25{\left(r+s\right)}^{3}}}$

$\frac{\sqrt{m\left(m-6\right)-{m}^{2}+6m}}{\sqrt{3m-7}}$

0

$\frac{\sqrt{r+1}}{\sqrt{r-1}}$

$\frac{\sqrt{s+3}}{\sqrt{s-3}}$

$\frac{\sqrt{{s}^{2}-9}}{s-3}$

$\frac{\sqrt{{a}^{2}+3a+2}}{\sqrt{a+1}}$

$\frac{\sqrt{{x}^{2}-10x+24}}{\sqrt{x-4}}$

$\sqrt{x-6}$

$\frac{\sqrt{{x}^{2}-2x-8}}{\sqrt{x+2}}$

$\frac{\sqrt{{x}^{2}-4x+3}}{\sqrt{x-3}}$

$\sqrt{x-1}$

$\frac{\sqrt{2{x}^{2}-x-1}}{\sqrt{x-1}}$

$\frac{-5}{4+\sqrt{5}}$

$\frac{-20+5\sqrt{5}}{11}$

$\frac{1}{1+\sqrt{x}}$

$\frac{2}{1-\sqrt{a}}$

$\frac{2\left(1+\sqrt{a}\right)}{1-a}$

$\frac{-6}{\sqrt{5}-1}$

$\frac{-6}{\sqrt{7}+2}$

$-2\left(\sqrt{7}-2\right)$

$\frac{3}{\sqrt{3}-\sqrt{2}}$

$\frac{4}{\sqrt{6}+\sqrt{2}}$

$\sqrt{6}-\sqrt{2}$

$\frac{\sqrt{5}}{\sqrt{8}-\sqrt{6}}$

$\frac{\sqrt{12}}{\sqrt{12}-\sqrt{8}}$

$3+\sqrt{6}$

$\frac{\sqrt{7x}}{2-\sqrt{5x}}$

$\frac{\sqrt{6y}}{1+\sqrt{3y}}$

$\frac{\sqrt{6y}-3y\sqrt{2}}{1-3y}$

$\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}$

$\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}$

$\frac{a-\sqrt{ab}}{a-b}$

$\frac{\sqrt{{8}^{3}{b}^{5}}}{4-\sqrt{2ab}}$

$\frac{\sqrt{7x}}{\sqrt{5x}+\sqrt{x}}$

$\frac{\sqrt{35}-\sqrt{7}}{4}$

$\frac{\sqrt{3y}}{\sqrt{2y}-\sqrt{y}}$

## Exercises for review

( [link] ) Simplify ${x}^{8}{y}^{7}\left(\frac{{x}^{4}{y}^{8}}{{x}^{3}{y}^{4}}\right).$

${x}^{9}{y}^{11}$

( [link] ) Solve the compound inequality $-8\le 7-5x\le -23.$

( [link] ) Construct the graph of $y=\frac{2}{3}x-4.$

( [link] ) The symbol $\sqrt{x}$ represents which square root of the number $x,\text{\hspace{0.17em}}x\ge 0$ ?

( [link] ) Simplify $\sqrt{{a}^{2}+8a+16}$ .

$a+4$

What is diseconomic
how can price determination be the central problem of micro economics
marginal cost formula
you should differentiate the total cost function in order to get marginal cost function then you can get marginal cost from it
boniphace
Foday
ok
Foday
how can price determination be the central problem if micro economics
simon
formula of cross elasticity of demand
what is ceteris paribus
what is ceteris parabus
Priyanka
Ceteris paribus - Literally, "other things being equal"; usually used in economics to indicate that all variables except the ones specified are assumed not to change.
Abdullah
What is broker
scor
land is natural resources that is made by nature
scor
What is broker
scor
what is land
kafui
What is broker
scor
land is natural resources that is made by nature
scor
whats poppina nigga turn it up for a minute get it
what is this?
Philo
am from nigeria@ pilo
Frank
am from nigeria@ pilo
Frank
so
owusu
what is production possibility frontier
owusu
it's a summary of opportunity cost depicted on a curve.
okhiria
please help me solve this question with the aid of appropriate diagrams explain how each of the following changes will affect the market price and quantity of bread 1. A
ok let me know some of the questions please.
Effah
ok am not wit some if den nw buh by tommorow I shall get Dem
Hi guys can I get Adam Smith's WEALTH OF NATIONS fo sale?
Ukpen
hello I'm Babaisa alhaji Mustapha. I'm studying Economics in the university of Maiduguri
Babaisa
okay
Humaira
my name is faisal Yahaya. i studied economics at Kaduna state university before proceeding to West African union university benin republic for masters
Faisal
Mannan
Wat d meaning of management
disaster management cycle
cooperate social responsibility
igwe
Fedric Wilson Taylor also define management as the act of knowing what to do and seeing that it is done in the best and cheapest way
OLANIYI
difference between microeconomics and macroeconomic
microeconomics is the study of individual units, firm and government while macroeconomics is the study of the economic aggregates.
okhiria
The classical theory of full employment
Lovely
what is monopoli power
the situation that prevails when economic forces balance so that economic variables neither increase nor decrease
Bombey
what is equilibrium
Kabir
what are the important of economic to accounting students with references
Economics is important because it helps people understand how a variety of factors work with and against each other to control how resources such as labor and capital get used, and how inflation, supply, demand, interest rates and other factors determine how much you pay for goods and services.
explain the steps taken by the government in developing rural market?
government provide good road for than
Abigailb
government should provide good agricultural project and it should also provide good road so that the the product that will come out of the farm will be easy transport to the market
ALIMAMY
farming equipments should be provided to farmers to help them improve in farming
Agbor
improving the transport systems providing enterpreneur edecation to the mass living in rural zones enforcment of loans and capital for the people rising awareness on the advantages of rural areas
abdul
contribution of Adam smith in economics
I will join
Dexter
I will join
Patrick
Hey
Fatima
Hey
Amir
Hello
AS
hey
Umarou
I love this book and i need extra Economic book
Amir
Hey
Amir
what's happening here
AS
I love this book and i need extra Economic book
Amir
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.