<< Chapter < Page Chapter >> Page >
  • Discuss the applications of Statics in real life.
  • State and discuss various problem-solving strategies in Statics.

Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We begin with a discussion of problem-solving strategies specifically used for statics. Since statics is a special case of Newton’s laws, both the general problem-solving strategies and the special strategies for Newton’s laws, discussed in Problem-Solving Strategies , still apply.

Problem-solving strategy: static equilibrium situations

  1. The first step is to determine whether or not the system is in static equilibrium    . This condition is always the case when the acceleration of the system is zero and accelerated rotation does not occur .
  2. It is particularly important to draw a free body diagram for the system of interest . Carefully label all forces, and note their relative magnitudes, directions, and points of application whenever these are known.
  3. Solve the problem by applying either or both of the conditions for equilibrium (represented by the equations net F = 0 size 12{"net"F=0} {} and net τ = 0 size 12{"net "τ rSub { size 8{"cw"} } ="net"τ rSub { size 8{"ccw"} } } {} , depending on the list of known and unknown factors. If the second condition is involved, choose the pivot point to simplify the solution . Any pivot point can be chosen, but the most useful ones cause torques by unknown forces to be zero. (Torque is zero if the force is applied at the pivot (then r = 0 size 12{r=0} {} ), or along a line through the pivot point (then θ = 0 size 12{θ=0} {} )). Always choose a convenient coordinate system for projecting forces.
  4. Check the solution to see if it is reasonable by examining the magnitude, direction, and units of the answer. The importance of this last step never diminishes, although in unfamiliar applications, it is usually more difficult to judge reasonableness. These judgments become progressively easier with experience.

Now let us apply this problem-solving strategy for the pole vaulter shown in the three figures below. The pole is uniform and has a mass of 5.00 kg. In [link] , the pole’s cg lies halfway between the vaulter’s hands. It seems reasonable that the force exerted by each hand is equal to half the weight of the pole, or 24.5 N. This obviously satisfies the first condition for equilibrium (net F = 0) size 12{"net "F=0} {} . The second condition (net τ = 0) is also satisfied, as we can see by choosing the cg to be the pivot point. The weight exerts no torque about a pivot point located at the cg, since it is applied at that point and its lever arm is zero. The equal forces exerted by the hands are equidistant from the chosen pivot, and so they exert equal and opposite torques. Similar arguments hold for other systems where supporting forces are exerted symmetrically about the cg. For example, the four legs of a uniform table each support one-fourth of its weight.

In [link] , a pole vaulter holding a pole with its cg halfway between his hands is shown. Each hand exerts a force equal to half the weight of the pole, F R = F L = w / 2 size 12{F rSub { size 8{R} } =F rSub { size 8{L} } =w/2} {} . (b) The pole vaulter moves the pole to his left, and the forces that the hands exert are no longer equal. See [link] . If the pole is held with its cg to the left of the person, then he must push down with his right hand and up with his left. The forces he exerts are larger here because they are in opposite directions and the cg is at a long distance from either hand.

Questions & Answers

Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
1. A black thermocouple measures the temperature in the chamber with black walls.if the air around the thermocouple is 200 C,the walls are at 1000 C,and the heat transfer constant is 15.compute the temperature gradient
Tikiso Reply
what is the relationship between G and g
Olaiya Reply
G is the u. constant, as g stands for grav, accelerate at a discreet point
Mark
Is that all about it?
Olaiya
pls explain in details
Olaiya
G is a universal constant
Mark
g stands for the gravitational acceleration point. hope this helps you.
Mark
balloon TD is at a gravitational acceleration at a specific point
Mark
I'm sorry this doesn't take dictation very well.
Mark
Can anyone explain the Hooke's law of elasticity?
Olaiya Reply
extension of a spring is proportional to the force applied so long as the force applied does not exceed the springs capacity according to my textbook
Amber
does this help?
Amber
Yes, thanks
Olaiya
so any solid can be compressed how compressed is dependent upon how much force is applied F=deltaL
Amber
sorry, the equation is F=KdeltaL delta is the triangle symbol and L is length so the change in length is proportional to amount of Force applied I believe that is what Hookes law means. anyone catch any mistakes here please correct me :)
Amber
I think it is used only for solids and not liquids, isn't it?
Olaiya
basically as long as you dont exceed the elastic limit the object should return to it original form but if you exceed this limit the object will not return to original shape as it will break
Amber
Thanks for the explanation
Olaiya
yh, liquids don't apply here, that should be viscosity
Chiamaka
hope it helps 😅
Amber
also, an object doesnt have to break necessarily, but it will have a new form :)
Amber
Yes
Olaiya
yeah, I think it is for solids but maybe there is a variation for liquids? that I am not sure of
Amber
ok
Olaiya
good luck!
Amber
Same
Olaiya
aplease i need a help on spcific latent heat of vibrations
Bilgate
specific latent heat of vaporisation
Bilgate
how many kilometers makes a mile
Margaret Reply
about 1.6 kilometres.
Faizyab
near about 1.67 kilometers
Aakash
equal to 1.609344 kilometers.
MUHD
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask