9.3 Stability  (Page 3/6)

 Page 3 / 6

Engineers and architects strive to achieve extremely stable equilibriums for buildings and other systems that must withstand wind, earthquakes, and other forces that displace them from equilibrium. Although the examples in this section emphasize gravitational forces, the basic conditions for equilibrium are the same for all types of forces. The net external force must be zero, and the net torque must also be zero.

Take-home experiment

Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels and bottom against the wall, to touch your toes. Can you do this without toppling over? Explain why and what you need to do to be able to touch your toes without losing your balance. Is it easier for a woman to do this?

Section summary

• A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a direction opposite the direction of the displacement.
• A system is in unstable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in the same direction as the displacement from equilibrium.
• A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position.

Conceptual questions

A round pencil lying on its side as in [link] is in neutral equilibrium relative to displacements perpendicular to its length. What is its stability relative to displacements parallel to its length?

Explain the need for tall towers on a suspension bridge to ensure stable equilibrium.

Problems&Exercises

Suppose a horse leans against a wall as in [link] . Calculate the force exerted on the wall assuming that force is horizontal while using the data in the schematic representation of the situation. Note that the force exerted on the wall is equal in magnitude and opposite in direction to the force exerted on the horse, keeping it in equilibrium. The total mass of the horse and rider is 500 kg. Take the data to be accurate to three digits.

${F}_{\text{wall}}=1.43×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{N}$

Two children of mass 20.0 kg and 30.0 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw. If the children are separated by a distance of 3.00 m, at what distance from the pivot point is the small child sitting in order to maintain the balance?

(a) Calculate the magnitude and direction of the force on each foot of the horse in [link] (two are on the ground), assuming the center of mass of the horse is midway between the feet. The total mass of the horse and rider is 500kg. (b) What is the minimum coefficient of friction between the hooves and ground? Note that the force exerted by the wall is horizontal.

a) $\text{2.55}{×10}^{3}\phantom{\rule{0.25em}{0ex}}\text{N, 16.3º to the left of vertical (i.e., toward the wall)}$

b) 0.292

A person carries a plank of wood 2.00 m long with one hand pushing down on it at one end with a force ${\text{F}}_{1}$ and the other hand holding it up at .500 m from the end of the plank with force ${\text{F}}_{2}$ . If the plank has a mass of 20.0 kg and its center of gravity is at the middle of the plank, what are the magnitudes of the forces ${\text{F}}_{1}$ and ${\text{F}}_{2}$ ?

A 17.0-m-high and 11.0-m-long wall under construction and its bracing are shown in [link] . The wall is in stable equilibrium without the bracing but can pivot at its base. Calculate the force exerted by each of the 10 braces if a strong wind exerts a horizontal force of 650 N on each square meter of the wall. Assume that the net force from the wind acts at a height halfway up the wall and that all braces exert equal forces parallel to their lengths. Neglect the thickness of the wall.

${F}_{\text{B}}=2.12×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N}$

(a) What force must be exerted by the wind to support a 2.50-kg chicken in the position shown in [link] ? (b) What is the ratio of this force to the chicken’s weight? (c) Does this support the contention that the chicken has a relatively stable construction?

Suppose the weight of the drawbridge in [link] is supported entirely by its hinges and the opposite shore, so that its cables are slack. (a) What fraction of the weight is supported by the opposite shore if the point of support is directly beneath the cable attachments? (b) What is the direction and magnitude of the force the hinges exert on the bridge under these circumstances? The mass of the bridge is 2500 kg.

a) 0.167, or about one-sixth of the weight is supported by the opposite shore.

b) $F=2\text{.}0×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N}$ , straight up.

Suppose a 900-kg car is on the bridge in [link] with its center of mass halfway between the hinges and the cable attachments. (The bridge is supported by the cables and hinges only.) (a) Find the force in the cables. (b) Find the direction and magnitude of the force exerted by the hinges on the bridge.

A sandwich board advertising sign is constructed as shown in [link] . The sign’s mass is 8.00 kg. (a) Calculate the tension in the chain assuming no friction between the legs and the sidewalk. (b) What force is exerted by each side on the hinge?

a) 21.6 N

b) 21.6 N

(a) What minimum coefficient of friction is needed between the legs and the ground to keep the sign in [link] in the position shown if the chain breaks? (b) What force is exerted by each side on the hinge?

A gymnast is attempting to perform splits. From the information given in [link] , calculate the magnitude and direction of the force exerted on each foot by the floor.

350 N directly upwards

but why is the cyclist relative with the canal .
It is more difficult to obtain a high-resolution ultrasound image in the abdominal region of someone who is overweight than for someone who has a slight build. Explain why this statement is accurate.
What is the frictional forc e between two bodies
it is the force which always opposes the motion of the body
ZAMAN
why is the force that oppose motion sir
Emmanuel
what is a wave
wave means. A field of study
aondohemba
what are Atoms
aondohemba
is the movement back and front or up and down
sani
how ?
aondohemba
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
lots
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
conist
an atom is the smallest unit( particle) of an element that bares it's chemical properties
conist
what is electromagnetic induction?
conist
what's boy's law
mahmud
wave is disturbance that travel through a medium ..maybe in vacuum
Emmanuel
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
How do you convert 0.0045kgcmÂ³ to the si unit?
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
list it out I wanna know
Cristal
what the meaning of continuum
What state of matter is fire
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
how can we define vector
mahmud
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
Hanzo
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
conist
what is the relativity of physics
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
hello
King
Explain dopplers effect
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody