<< Chapter < Page Chapter >> Page >
Usando el algoritmo de Cooley-Tukey para derivar la transfromada rápida.

Para derivar la FFT,asumimos que la duración de la señal es una potencia de dos: N 2 l . Considere que pasa a los elementos pares numerados y a los elemenots impares numerados de la solución de la secuencia en la DFT.

S k s 0 s 2 2 2 k N s N 2 2 N 2 k N s 1 2 k N s 3 2 2 1 k N s N 1 2 N 2 1 k N s 0 s 2 2 k N 2 s N 2 2 N 2 1 k N 2 s 1 s 3 2 k N 2 s N 1 2 N 2 1 k N 2 2 k N

Cada término en paréntesis al cuadrado tiene la forma de una longitud N 2 de DFT. La primera es una DFT de los elementos pares nuemrados,y la segunda es de los elementos impares numerados. La primer DFT es combinada con la segunda multiplicadno por el exponencial complejo 2 k N . La media-longitud de la transformada es cada evaluación de losíndices de frecuencia k 0 N 1 . Normalmente el número de indices de frecuencia del rango de una calculación de la DFT esta entre cero y la longitud de la transformación menos uno. La ventaja computacional de la FFT viene de reconocer la natulareza del periódo de la transformada discreta de Fourier. La FFT simplemente reusa las soluciones hechas en la media-longitud de la transformada y las combina a través de sumas y multiplicaciones por 2 k N , que no es periódica sobre N 2 , para rescribir la longitud-N DFT. La ilustra la descomposición. Como se mantiene, ahora resolvemos dos transformadas de longitudes- N 2 (complejidad 2 O N 2 4 ), multiplicar una de ellas por el exponencial complejo (complejidad O N ), y sumar los resultados (complejidad O N ). En este punto, el total de complejidad sigue dominado por la mitad-longitud de la calculación de DFT, pero el coeficente de proporcionalidad ha sido reducido.

Ahora para la diversión. Por que N 2 l , cada una de las transformaciones de media-longitud puede ser reducida a una de dos cuartos-longitud, cada una de estas en dos octavos-longitud, etc. Esta descomposición continua hasta que nos quedamos con una transformada de longitud -2 . Esta transformada es absolutamente simple, involucrando solo sumas. Donde la primer etapa de la FFT tiene N 2 transformadas de longitud-2 (vease la parte de abajo de la ). Pares de estas transformadas son combinados suamando uno a otro multiplicado por el exponencial complejo. Cada par requiere 4 sumas y 4 multiplicaciones, dando un número total de computaciones igual a 8 N 4 N 2 . Este número de computaciones no cambia de etapa a etapa. Ya que el número de etapas, el número de veces que la longitud puede ser dividida por dos, igual a 2 logbase --> N , la complejidad de la FFT es O N N .

DescomposiciÓN de la dft de longitud-8

La descomposición inicial de una longitud-8 DFT en términos usandoíndices pares e impares entradas marca la primera fase de convertirse en el algoritmo de la FFT. Cuando esta transformada de media-longitud esta completamente descompuesta, nos quedamos con el diagrama del panel inferior que representa la solución de la FFT de longitud-8.

Haciendo un ejemplo haremos ahorros de procesos más obvios. Veamos los detalles de la DFT de longitud-8. Como se muestra en la , primero descomponemos la DFT en dos DFT de longitud-4,con las salidas sumadas y restadas en pares. Considerando la como elíndice de frecuencia que va de 0 hasta 7,reciclamos valores de la DFT de longitud-4 para los calculos finales por la periódicidad de la salida de la DFT. Examinando como los pares de salidas se recojen juntas, creamos los alementos computacionales básicos conocidos como una mariposa ( ).

Mariposa

Los elementos computacionales básicos de la transformada rápida de Fourier es la mariposa. Toma dos números complejos, representados por a y b , y forma las cantidades mostradas . Cada mariposa requiere una multiplicación compleja y dos sumas complejas.

Considerando los procesos involucrando la salida de frecuencias comunes de la DFT de dos media-longitud, vemos que las dos multiplicaciones complejas son relacionadas unas con otras, y podemos reducir nuestro proceso en un futuro. Para descomposiciones posteriores las DFT de longitud-4 en las DFT de longitud-2 y combinando sus salidas, llegamos al resumen del diagrama de la transformada rápida de Fourier de longitud-8 ( ). Aunque la multiplicación de los complejos es absolutamente simple (multiplicando por significa partes negativas reales y partes imaginarias), contemosésos para los propósitos de evaluar la complejidad como el complejo se multiplica por completo. Tenemos N 2 4 multiplicaciones complejas y 2 N 16 sumas para cada etapa y 2 logbase --> N 3 etapas, haciendo el número de procesos básicos 3 N 2 2 logbase --> N como se predijo.

Notese que el orden de la secuencia de entrada en dos partes de no estan absolutamente iguales.¿por que no?,¿cómo esta determinado este orden?

El panel de arriba no usa el algoritmo de FFT para procesar la DFT de longitud-4 mientras que el abajo si.El orden es determinado por el algoritmo.

Got questions? Get instant answers now!

Otros lagoritmos "rápidos" han sido descubiertos, todos de los cuales hacen uso de cuantos factores tiene la transformada de longitud N. En teoria de números, el número de factores primos de un entero dado tiene medidas como compuesto es el. El número 16 y 81 son altamente compuestos (iguales a 2 4 y 3 4 respectivamente),el número 18 es menor asi que ( 2 1 3 2 ), y el 17 no del todo (es primo). a través de treinta años de desarrollo del algoritmo de la transformada de Fourier, el algoritmo original de Cooley-Tukey esta alejado de los usados con mas frecuancia. Es tan effciente computacionalmente hablando como la transformada de longitud de potencia de dos es frecuentemente usada sin importar la longitud actual de los datos.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask