# 8.9 Dividing polynomials  (Page 2/2)

 Page 2 / 2

The process was to divide, multiply, and subtract.

## Review of subtraction of polynomials

A very important step in the process of dividing one polynomial by another is subtraction of polynomials. Let’s review the process of subtraction by observing a few examples.

1. Subtract $x-2$ from $x-5;$ that is, find $\left(x-5\right)-\left(x-2\right).$

Since $\mathrm{ x}-2$ is preceded by a minus sign, remove the parentheses, change the sign of each term, then add.

$\frac{\begin{array}{l}\mathrm{ x}-5\\ -\left(x-2\right)\end{array}}{}=\frac{\begin{array}{l}x-5\\ -x+2\end{array}}{-3}$

The result is $-3.$

2. Subtract ${x}^{3}+3{x}^{2}$ from ${x}^{3}+4{x}^{2}+x-1.$

Since ${x}^{3}+3{x}^{2}$ is preceded by a minus sign, remove the parentheses, change the sign of each term, then add.

$\frac{\begin{array}{l}{x}^{3}+4{x}^{2}+x-1\\ -\left({x}^{3}+3{x}^{2}\right)\end{array}}{}=\frac{\begin{array}{l}{x}^{3}+4{x}^{2}+x-1\\ -{x}^{3}-3{x}^{2}\end{array}}{{x}^{2}+x-1}$

The result is ${\text{x}}^{2}+x-1.$

3. Subtract ${x}^{2}+3x$ from ${x}^{2}+1.$

We can write ${x}^{2}+1$ as ${x}^{2}+0x+1.$

$\frac{\begin{array}{l}{x}^{2}+1\\ -\left({x}^{2}+3x\right)\end{array}}{}=\frac{\begin{array}{l}{x}^{2}+0x+1\\ -\left({x}^{2}+3x\right)\end{array}}{}=\frac{\begin{array}{l}{x}^{2}+0x+1\\ -{x}^{2}-3x\end{array}}{-3x+1}$

## Dividing a polynomial by a polynomial

Now we’ll observe some examples of dividing one polynomial by another. The process is the same as the process used with whole numbers: divide, multiply, subtract, divide, multiply, subtract,....

The division, multiplication, and subtraction take place one term at a time. The process is concluded when the polynomial remainder is of lesser degree than the polynomial divisor.

## Sample set b

Perform the division.

$\begin{array}{lll}\frac{x-5}{x-2}.\hfill & \hfill & \text{We\hspace{0.17em}are\hspace{0.17em}to\hspace{0.17em}divide\hspace{0.17em}}x-5\text{\hspace{0.17em}by\hspace{0.17em}}x-2.\hfill \end{array}$ $\begin{array}{l}1-\frac{3}{x-2}\\ \text{Thus,}\\ \frac{x-5}{x-2}=1-\frac{3}{x-2}\end{array}$

$\begin{array}{lll}\frac{{x}^{3}+4{x}^{2}+x-1}{x+3}.\hfill & \hfill & \text{We\hspace{0.17em}are\hspace{0.17em}to\hspace{0.17em}divide\hspace{0.17em}}{x}^{3}+4{x}^{2}+x-1\text{\hspace{0.17em}by\hspace{0.17em}}x+3.\hfill \end{array}$ $\begin{array}{l}{x}^{2}+x-2+\frac{5}{x+3}\\ \text{Thus,}\\ \frac{{x}^{3}+4{x}^{2}+x-1}{x+3}={x}^{2}+x-2+\frac{5}{x+3}\end{array}$

## Practice set b

Perform the following divisions.

$\frac{x+6}{x-1}$

$1+\frac{7}{x-1}$

$\frac{{x}^{2}+2x+5}{x+3}$

$x-1+\frac{8}{x+3}$

$\frac{{x}^{3}+{x}^{2}-x-2}{x+8}$

${x}^{2}-7x+55-\frac{442}{x+8}$

$\frac{{x}^{3}+{x}^{2}-3x+1}{{x}^{2}+4x-5}$

$x-3+\frac{14x-14}{{x}^{2}+4x-5}=x-3+\frac{14}{x+5}$

## Sample set c

$\begin{array}{l}\text{Divide\hspace{0.17em}}2{x}^{3}-4x+1\text{\hspace{0.17em}}\text{by\hspace{0.17em}}x+6.\\ \begin{array}{lll}\frac{2{x}^{3}-4x+1}{x+6}\hfill & \hfill & \begin{array}{l}\text{Notice\hspace{0.17em}that\hspace{0.17em}the\hspace{0.17em}}{x}^{2}\text{\hspace{0.17em}term\hspace{0.17em}in\hspace{0.17em}the\hspace{0.17em}numerator\hspace{0.17em}is\hspace{0.17em}missing}\text{.\hspace{0.17em}}\\ \text{We\hspace{0.17em}can\hspace{0.17em}avoid\hspace{0.17em}any\hspace{0.17em}confusion\hspace{0.17em}by\hspace{0.17em}writing}\end{array}\hfill \\ \frac{2{x}^{3}+0{x}^{2}-4x+1}{x+6}\hfill & \hfill & \text{Divide,\hspace{0.17em}multiply,\hspace{0.17em}and\hspace{0.17em}subtract}\text{.}\hfill \end{array}\end{array}$ $\frac{2{x}^{3}-4x+1}{x+6}=2{x}^{3}-12x+68-\frac{407}{x+6}$

## Practice set c

Perform the following divisions.

$\frac{{x}^{2}-3}{x+2}$

$x-2+\frac{1}{x+2}$

$\frac{4{x}^{2}-1}{x-3}$

$4x+12+\frac{35}{x-3}$

$\frac{{x}^{3}+2x+2}{x-2}$

${x}^{2}+2x+6+\frac{14}{x-2}$

$\frac{6{x}^{3}+5{x}^{2}-1}{2x+3}$

$3{x}^{2}-2x+3-\frac{10}{2x+3}$

## Exercises

For the following problems, perform the divisions.

$\frac{6a+12}{2}$

$3a+6$

$\frac{12b-6}{3}$

$\frac{8y-4}{-4}$

$-2y+1$

$\frac{21a-9}{-3}$

$\frac{3{x}^{2}-6x}{-3}$

$-x\left(x-2\right)$

$\frac{4{y}^{2}-2y}{2y}$

$\frac{9{a}^{2}+3a}{3a}$

$3a+1$

$\frac{20{x}^{2}+10x}{5x}$

$\frac{6{x}^{3}+2{x}^{2}+8x}{2x}$

$3{x}^{2}+x+4$

$\frac{26{y}^{3}+13{y}^{2}+39y}{13y}$

$\frac{{a}^{2}{b}^{2}+4{a}^{2}b+6a{b}^{2}-10ab}{ab}$

$ab+4a+6b-10$

$\frac{7{x}^{3}y+8{x}^{2}{y}^{3}+3x{y}^{4}-4xy}{xy}$

$\frac{5{x}^{3}{y}^{3}-15{x}^{2}{y}^{2}+20xy}{-5xy}$

$-{x}^{2}{y}^{2}+3xy-4$

$\frac{4{a}^{2}{b}^{3}-8a{b}^{4}+12a{b}^{2}}{-2a{b}^{2}}$

$\frac{6{a}^{2}{y}^{2}+12{a}^{2}y+18{a}^{2}}{24{a}^{2}}$

$\frac{1}{4}{y}^{2}+\frac{1}{2}y+\frac{3}{4}$

$\frac{3{c}^{3}{y}^{3}+99{c}^{3}{y}^{4}-12{c}^{3}{y}^{5}}{3{c}^{3}{y}^{3}}$

$\frac{16a{x}^{2}-20a{x}^{3}+24a{x}^{4}}{6{a}^{4}}$

$\frac{8{x}^{2}-10{x}^{3}+12{x}^{4}}{3{a}^{3}}\text{or}\frac{12{x}^{4}-10{x}^{3}+8{x}^{2}}{3{a}^{3}}$

$\frac{21a{y}^{3}-18a{y}^{2}-15ay}{6a{y}^{2}}$

$\frac{-14{b}^{2}{c}^{2}+21{b}^{3}{c}^{3}-28{c}^{3}}{-7{a}^{2}{c}^{3}}$

$\frac{2{b}^{2}-3{b}^{3}c+4c}{{a}^{2}c}$

$\frac{-30{a}^{2}{b}^{4}-35{a}^{2}{b}^{3}-25{a}^{2}}{-5{b}^{3}}$

$\frac{x+6}{x-2}$

$1+\frac{8}{x-2}$

$\frac{y+7}{y+1}$

$\frac{{x}^{2}-x+4}{x+2}$

$x-3+\frac{10}{x+2}$

$\frac{{x}^{2}+2x-1}{x+1}$

$\frac{{x}^{2}-x+3}{x+1}$

$x-2+\frac{5}{x+1}$

$\frac{{x}^{2}+5x+5}{x+5}$

$\frac{{x}^{2}-2}{x+1}$

$x-1-\frac{1}{x+1}$

$\frac{{a}^{2}-6}{a+2}$

$\frac{{y}^{2}+4}{y+2}$

$y-2+\frac{8}{y+2}$

$\frac{{x}^{2}+36}{x+6}$

$\frac{{x}^{3}-1}{x+1}$

${x}^{2}-x+1-\frac{2}{x+1}$

$\frac{{a}^{3}-8}{a+2}$

$\frac{{x}^{3}-1}{x-1}$

${x}^{2}+x+1$

$\frac{{a}^{3}-8}{a-2}$

$\frac{{x}^{3}+3{x}^{2}+x-2}{x-2}$

${x}^{2}+5x+11+\frac{20}{x-2}$

$\frac{{a}^{3}+2{a}^{2}-a+1}{a-3}$

$\frac{{a}^{3}+a+6}{a-1}$

${a}^{2}+a+2+\frac{8}{a-1}$

$\frac{{x}^{3}+2x+1}{x-3}$

$\frac{{y}^{3}+3{y}^{2}+4}{y+2}$

${y}^{2}+y-2+\frac{8}{y+2}$

$\frac{{y}^{3}+5{y}^{2}-3}{y-1}$

$\frac{{x}^{3}+3{x}^{2}}{x+3}$

${x}^{2}$

$\frac{{a}^{2}+2a}{a+2}$

$\frac{{x}^{2}-x-6}{{x}^{2}-2x-3}$

$1+\frac{1}{x+1}$

$\frac{{a}^{2}+5a+4}{{a}^{2}-a-2}$

$\frac{2{y}^{2}+5y+3}{{y}^{2}-3y-4}$

$2+\frac{11}{y-4}$

$\frac{3{a}^{2}+4a-4}{{a}^{2}+3a+3}$

$\frac{2{x}^{2}-x+4}{2x-1}$

$x+\frac{4}{2x-1}$

$\frac{3{a}^{2}+4a+2}{3a+4}$

$\frac{6{x}^{2}+8x-1}{3x+4}$

$2x-\frac{1}{3x+4}$

$\frac{20{y}^{2}+15y-4}{4y+3}$

$\frac{4{x}^{3}+4{x}^{2}-3x-2}{2x-1}$

$2{x}^{2}+3x-\frac{2}{2x-1}$

$\frac{9{a}^{3}-18{a}^{2}+8a-1}{3a-2}$

$\frac{4{x}^{4}-4{x}^{3}+2{x}^{2}-2x-1}{x-1}$

$4{x}^{3}+2x-\frac{1}{x-1}$

$\frac{3{y}^{4}+9{y}^{3}-2{y}^{2}-6y+4}{y+3}$

$\frac{3{y}^{2}+3y+5}{{y}^{2}+y+1}$

$3+\frac{2}{{y}^{2}+y+1}$

$\frac{2{a}^{2}+4a+1}{{a}^{2}+2a+3}$

$\frac{8{z}^{6}-4{z}^{5}-8{z}^{4}+8{z}^{3}+3{z}^{2}-14z}{2z-3}$

$4{z}^{5}+4{z}^{4}+2{z}^{3}+7{z}^{2}+12z+11+\frac{33}{2z-3}$

$\frac{9{a}^{7}+15{a}^{6}+4{a}^{5}-3{a}^{4}-{a}^{3}+12{a}^{2}+a-5}{3a+1}$

$\left(2{x}^{5}+5{x}^{4}-1\right)\text{\hspace{0.17em}}÷\text{\hspace{0.17em}}\left(2x+5\right)$

${x}^{4}-\frac{1}{2x+5}$

$\left(6{a}^{4}-2{a}^{3}-3{a}^{2}+a+4\right)\text{\hspace{0.17em}}÷\text{\hspace{0.17em}}\left(3a-1\right)$

## Exercises for review

( [link] ) Find the product. $\frac{{x}^{2}+2x-8}{{x}^{2}-9}·\frac{2x+6}{4x-8}.$

$\frac{x+4}{2\left(x-3\right)}$

( [link] ) Find the sum. $\frac{x-7}{x+5}+\frac{x+4}{x-2}.$

( [link] ) Solve the equation $\frac{1}{x+3}+\frac{1}{x-3}=\frac{1}{{x}^{2}-9}.$

$x=\frac{1}{2}$

( [link] ) When the same number is subtracted from both the numerator and denominator of $\frac{3}{10}$ , the result is $\frac{1}{8}$ . What is the number that is subtracted?

( [link] ) Simplify $\frac{\frac{1}{x+5}}{\frac{4}{{x}^{2}-25}}.$

$\frac{x-5}{4}$

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.

#### Get Jobilize Job Search Mobile App in your pocket Now! By By OpenStax By OpenStax By Richley Crapo By Rhodes By By Royalle Moore By David Corey By Yacoub Jayoghli By Madison Christian By OpenStax