<< Chapter < Page Chapter >> Page >

Solution for (b)

Rotational kinetic energy is given by

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

KE rot = ( 0 . 5 ) 2 . 34 kg m 2 0 . 800 rev/s rad/rev 2 = 29.6 J.

The final rotational kinetic energy is

KE rot = 1 2 I ω 2 .

Substituting known values into this equation gives

K E rot = 0 . 5 0 .363 kg m 2 5 . 16 rev/s 2π rad/rev 2 = 191 J. alignl { stack { size 12{K { {E}} sup { ' } rSub { size 8{"rot"} } = left (0 "." 5 right ) left (0 "." "363"" kg" cdot m rSup { size 8{2} } right ) left [ left (5 "." "16"" rev/s" right ) left (2π" rad/rev" right ) right ]rSup { size 8{2} } } {} # " "="191"" J" {}} } {}


In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The increase in rotational kinetic energy comes from work done by the skater in pulling in her arms. This work is internal work that depletes some of the skater’s food energy.

There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia. Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even in a local region, angular velocity increases, sometimes to the furious level of a tornado. Earth is another example. Our planet was born from a huge cloud of gas and dust, the rotation of which came from turbulence in an even larger cloud. Gravitational forces caused the cloud to contract, and the rotation rate increased as a result. (See [link] .)

The first figure shows a cloud of dust and gas,which is in the shape of a distorted circle, rotating in anti-clockwise direction with an angular velocity omega, indicated by a curved black arrow, and having an angular momentum L. The second figure shows an elliptical cloud of dust with the Sun in the middle of it, rotating in anti-clockwise direction with an angular velocity omega dash, indicated by a curved black arrow, and having an angular momentum L. The third figure depicts the Solar System, with the Sun in the middle of it and the various planets revolve around it in their respective elliptical orbits in anti-clockwise direction, which is indicated by arrows. The angular momentum remains L.
The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the planets are in the same direction as the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the environment as its foot pushes off the ground. Astronauts floating in space aboard the International Space Station have no angular momentum relative to the inside of the ship if they are motionless. Their bodies will continue to have this zero value no matter how they twist about as long as they do not give themselves a push off the side of the vessel.

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different units and are not directly inter-convertible like forms of energy are.

Section summary

  • Every rotational phenomenon has a direct translational analog , likewise angular momentum L size 12{L} {} can be defined as L = . size 12{L=Iω} {}
  • This equation is an analog to the definition of linear momentum as p = mv size 12{p= ital "mv"} {} . The relationship between torque and angular momentum is net τ = Δ L Δ t . size 12{"net "τ= { {ΔL} over {Δt} } } {}
  • Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external force is zero.

Conceptual questions

When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of the engine’s rotation. Explain in terms of conservation of angular momentum. Is the angular momentum of the car conserved for long (for more than a few seconds)?

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?