# 8.7 Angular momentum and its conservation  (Page 3/7)

 Page 3 / 7

What we have here is, in fact, another conservation law. If the net torque is zero , then angular momentum is constant or conserved . We can see this rigorously by considering $\text{net}\phantom{\rule{0.25em}{0ex}}\tau =\frac{\text{Δ}L}{\text{Δ}t}$ for the situation in which the net torque is zero. In that case,

$\text{net}\tau =0$

implying that

$\frac{\text{Δ}L}{\text{Δ}t}=0.$

If the change in angular momentum $\text{Δ}L$ is zero, then the angular momentum is constant; thus,

$L=\text{constant}\phantom{\rule{0.25em}{0ex}}\left(\text{net}\phantom{\rule{0.25em}{0ex}}\tau =0\right)$

or

$L=L\prime \text{}\left(\text{net}\tau =0\right).$

These expressions are the law of conservation of angular momentum    . Conservation laws are as scarce as they are important.

An example of conservation of angular momentum is seen in [link] , in which an ice skater is executing a spin. The net torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the friction is exerted very close to the pivot point. (Both $F$ and $r$ are small, and so $\tau$ is negligibly small.) Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

$L=L\prime .$

Expressing this equation in terms of the moment of inertia,

$\mathrm{I\omega }=I\prime \omega \prime ,$

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because $I\prime$ is smaller, the angular velocity $\omega \prime$ must increase to keep the angular momentum constant. The change can be dramatic, as the following example shows.

## Calculating the angular momentum of a spinning skater

Suppose an ice skater, such as the one in [link] , is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of $2\text{.}\text{34}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}$ with her arms extended and of $0\text{.}\text{363}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}$ with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity $\omega \prime$ after she has pulled in her arms. To find this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}.$

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in $\mathrm{I\omega }=I\prime \omega \prime$ is applicable. Thus,

$L=L\prime$

or

$\mathrm{I\omega }=I\prime \omega \prime$

Solving for $\omega \prime$ and substituting known values into the resulting equation gives

$\begin{array}{lll}\omega \prime & =& \frac{I}{I\prime }\omega =\left(\frac{\text{2.34 kg}\cdot {m}^{2}}{0\text{.363 kg}\cdot {m}^{2}}\right)\left(\text{0.800 rev/s}\right)\\ & =& \text{}\text{5.16 rev/s.}\end{array}$

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!