# 8.7 Angular momentum and its conservation  (Page 2/7)

 Page 2 / 7

## Calculating the torque in a kick

The person whose leg is shown in [link] kicks his leg by exerting a 2000-N force with his upper leg muscle. The effective perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is $1.25 kg\cdot {\text{m}}^{2}$ , (a) find the angular acceleration of the leg. (b) Neglecting the gravitational force, what is the rotational kinetic energy of the leg after it has rotated through $\text{57}\text{.}3º$ (1.00 rad)?

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or $\alpha =\text{net}\phantom{\rule{0.25em}{0ex}}\tau /I$ . The moment of inertia $I$ is given and the torque can be found easily from the given force and perpendicular lever arm. Once the angular acceleration $\alpha$ is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration $\alpha$ is

$\alpha =\frac{\text{net}\phantom{\rule{0.25em}{0ex}}\tau }{I}.$

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a torque, the net torque is thus

$\begin{array}{lll}\text{net}\phantom{\rule{0.25em}{0ex}}\tau & =& {r}_{\perp }F\\ & =& \left(0\text{.}\text{0220 m}\right)\left(\text{2000}\phantom{\rule{0.25em}{0ex}}\text{N}\right)\\ & =& \text{44}\text{.}\text{0 N}\cdot \text{m.}\end{array}$

Substituting this value for the torque and the given value for the moment of inertia into the expression for $\alpha$ gives

$\alpha =\frac{\text{44}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{N}\cdot \text{m}}{1\text{.}\text{25}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}}=\text{35}\text{.}2\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}.$

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

${\omega }^{2}={{\omega }_{0}}^{2}+2\text{αθ}$

or

${\omega }^{2}=2\text{αθ}$

because the initial angular velocity is zero. The kinetic energy of rotation is

${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}$

so it is most convenient to use the value of ${\omega }^{2}$ just found and the given value for the moment of inertia. The kinetic energy is then

$\begin{array}{lll}{\text{KE}}_{\text{rot}}& =& 0.5\left(1\text{.25}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}\right)\left(\text{70.}4\phantom{\rule{0.25em}{0ex}}{\text{rad}}^{2}/{\text{s}}^{2}\right)\\ & =& \text{44}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{J}\end{array}.$

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in the knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than that created by the weight of the lower leg as it rotates. The rotational kinetic energy given to the lower leg is enough that it could give a ball a significant velocity by transferring some of this energy in a kick.

## Making connections: conservation laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external force is zero.

## Conservation of angular momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, $\text{Δ}L=\left(\text{net}\phantom{\rule{0.25em}{0ex}}\tau \right)\text{Δ}t$ . This equation means that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular momentum, a large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal friction exerts torque that is slowing Earth’s rotation, but tens of millions of years must pass before the change is very significant. Recent research indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!