<< Chapter < Page Chapter >> Page >
The given figure shows two circular objects, one with a larger mass M on the right side, and another with a smaller mass m on the left side. A point in the center of each object is shown, with both depicting the center of mass of the objects at these points. A line is drawn joining the center of the objects and is labeled as r. Two red arrows, one each from both the center of the objects, are drawn toward each other and are labeled as F, the magnitude of the gravitational force on both the objects.
Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each, consistent with Newton’s third law.

Misconception alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton’s third law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is concentrated at one specific point called the center of mass    (CM), which will be further explored in Linear Momentum and Collisions . For two bodies having masses m size 12{m} {} and M size 12{M} {} with a distance r size 12{r} {} between their centers of mass, the equation for Newton’s universal law of gravitation is

F = G mM r 2 , size 12{F=G { { ital "mM"} over {r rSup { size 8{2} } } } } {}

where F size 12{F} {} is the magnitude of the gravitational force and G size 12{G} {} is a proportionality factor called the gravitational constant . G size 12{G} {} is a universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured experimentally to be

G = 6 . 674 × 10 11 N m 2 kg 2 size 12{G=6 "." "673" times "10" rSup { size 8{ - "11"} } { {N cdot m rSup { size 8{2} } } over {"kg" rSup { size 8{2} } } } } {}

in SI units. Note that the units of G size 12{G} {} are such that a force in newtons is obtained from F = G mM r 2 size 12{F=G { { ital "mM"} over {r rSup { size 8{2} } } } } {} , when considering masses in kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational attraction of 6 . 674 × 10 11 N size 12{6 "." "673" times "10" rSup { size 8{ - "11"} } N} {} . This is an extraordinarily small force. The small magnitude of the gravitational force is consistent with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In fact, our body weight is the force of attraction of the entire Earth on us with a mass of 6 × 10 24 kg size 12{6 times "10" rSup { size 8{"24"} } `"kg"} {} .

Recall that the acceleration due to gravity g size 12{g} {} is about 9.80 m /s 2 size 12{9 "." 8`"m/s" rSup { size 8{2} } } {} on Earth. We can now determine why this is so. The weight of an object mg is the gravitational force between it and Earth. Substituting mg for F size 12{F} {} in Newton’s universal law of gravitation gives

mg = G mM r 2 , size 12{ ital "mg"=G { { ital "mM"} over {r rSup { size 8{2} } } } } {}

where m size 12{m} {} is the mass of the object, M size 12{M} {} is the mass of Earth, and r size 12{r} {} is the distance to the center of Earth (the distance between the centers of mass of the object and Earth). See [link] . The mass m size 12{m} {} of the object cancels, leaving an equation for g size 12{g} {} :

g = G M r 2 . size 12{g=G { {M} over {r rSup { size 8{2} } } } } {}

Substituting known values for Earth’s mass and radius (to three significant figures),

g = 6 . 67 × 10 11 N m 2 kg 2 × 5 . 98 × 10 24 kg ( 6 . 38 × 10 6 m ) 2 , size 12{g= left (6 "." "67" times "10" rSup { size 8{ - "11"} } { {N cdot m rSup { size 8{2} } } over {"kg" rSup { size 8{2} } } } right ) times { {5 "." "98" times "10" rSup { size 8{"24"} } " kg"} over { \( 6 "." "38" times "10" rSup { size 8{6} } " m" \) rSup { size 8{2} } } } } {}

and we obtain a value for the acceleration of a falling body:

g = 9 . 80 m/s 2 . size 12{g=9 "." "80"" m/s" rSup { size 8{2} } } {}
The given figure shows two circular images side by side. The bigger circular image on the left shows the Earth, with a map of Africa over it in the center, and the first quadrant in the circle being a line diagram showing the layers beneath Earth’s surface. The second circular image shows a house over the Earth’s surface and a vertical line arrow from its center to the downward point in the circle as its radius distance from the Earth’s surface. A similar line showing the Earth’s radius is also drawn in the first quadrant of the first image in a slanting way from the center point to the circle path.
The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because Earth is so much larger than the object.

This is the expected value and is independent of the body’s mass . Newton’s law of gravitation takes Galileo’s observation that all masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in fact, in terms of a universally existing force of attraction between masses.

Take-home experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a piece of paper as well, does it behave like the other objects? Explain your observations.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play

Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?