<< Chapter < Page Chapter >> Page >
  • Observe the kinematics of rotational motion.
  • Derive rotational kinematic equations.
  • Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like θ size 12{θ} {} , ω size 12{ω} {} , and α size 12{α} {} are related to one another. For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration α size 12{α} {} is large for a long period of time t size 12{α} {} , then the final angular velocity ω size 12{ω} {} and angle of rotation θ size 12{θ} {} are large. The wheel’s rotational motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion    describes the relationships among rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} . To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

v = v 0 + at       ( constant  a ) size 12{v=v rSub { size 8{0} } + ital "at"" " \[ "constant "a \] } {}

Note that in rotational motion a = a t size 12{a=a rSub { size 8{t} } } {} , and we shall use the symbol a size 12{a} {} for tangential or linear acceleration from now on. As in linear kinematics, we assume a size 12{a} {} is constant, which means that angular acceleration α size 12{α} {} is also a constant, because a = size 12{a=rα} {} . Now, let us substitute v = size 12{v=rω} {} and a = size 12{a=rα} {} into the linear equation above:

= 0 + rαt . size 12{rω=rω rSub { size 8{0} } +rαt} {}

The radius r size 12{r} {} cancels in the equation, yielding

ω = ω 0 + at       ( constant  a ) , size 12{ω=ω rSub { size 8{0} } + ital "at"" " \[ "constant "a \] ,} {}

where ω 0 size 12{ω rSub { size 8{0} } } {} is the initial angular velocity. This last equation is a kinematic relationship among ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} —that is, it describes their relationship without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its translational counterpart.

Making connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional Kinematics . Kinematics is concerned with the description of motion without regard to force or mass. We will find that translational kinematic quantities, such as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics , we can derive the following four rotational kinematic equations (presented together with their translational counterparts):

Rotational kinematic equations
Rotational Translational
θ = ω ¯ t size 12{θ= {overline {ωt}} } {} x = v - t size 12{x= { bar {v}}t} {}
ω = ω 0 + αt size 12{ω=ω rSub { size 8{0} } +αt} {} v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} (constant α size 12{α} {} , a size 12{a} {} )
θ = ω 0 t + 1 2 αt 2 size 12{θ=ω rSub { size 8{0} } t+ { {1} over {2} } αt rSup { size 8{2} } } {} x = v 0 t + 1 2 at 2 size 12{x=v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} (constant α size 12{α} {} , a size 12{a} {} )
ω 2 = ω 0 2 + 2 αθ size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {} v 2 = v 0 2 + 2 ax (constant α , a )

In these equations, the subscript 0 denotes initial values ( θ 0 size 12{θ rSub { size 8{0} } } {} , x 0 size 12{x rSub { size 8{0} } } {} , and t 0 size 12{t rSub { size 8{0} } } {} are initial values), and the average angular velocity ω - size 12{ { bar {ω}}} {} and average velocity v - size 12{ { bar {v}}} {} are defined as follows:

ω ¯ = ω 0 + ω 2  and  v ¯ = v 0 + v 2 . size 12{ {overline {ω}} = { {ω rSub { size 8{0} } +ω} over {2} } " and " {overline {v}} = { {v rSub { size 8{0} } +v} over {2} } " " \( "constant "α, a \) } {}

The equations given above in [link] can be used to solve any rotational or translational kinematics problem in which a size 12{a} {} and α size 12{α} {} are constant.

Problem-solving strategy for rotational kinematics

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved . Rotation must be involved, but without the need to consider forces or masses that affect the motion.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns) . A sketch of the situation is useful.
  3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns) .
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown) . It can be useful to think in terms of a translational analog because by now you are familiar with such motion.
  5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions complete with units . Be sure to use units of radians for angles.
  6. Check your answer to see if it is reasonable: Does your answer make sense ?

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?

Ask