<< Chapter < Page Chapter >> Page >


The poly-emitter work function can be calculated by measuring the position of the Fermi-Energy at the poly-silicon/silicon interface relative to the conduction band and adding this value to 4.17V. For example, if the Fermi-Energy is measured as being 0.1eV from the conduction band edge, the work function of the poly-emitter set in the CONTACT statement should be set to 4.17 + 0.1 = 4.27V.

Figure 7.44: Effect of emitter contact work function on bipolar gain

Bandgap Narrowing Effects

If the BIPOLAR parameter is stipulated in the MODELS statement in ATLAS, bandgap narrowing is included automatically. The inclusion of bandgap narrowing in the MODELS statement is strongly advised since this phenomenon has a significant effect on the current gain of the device. But, to validate the default Klaassen bandgap narrowing model, you should also use the Klaassen mobility model. Use the additional keyword KLA in the MODELS statement to activate this model. For example:


The parameters in the Klaassen bandgap narrowing model are user-definable in the MATERIAL statement and described in the “Physics” Chapter of the ATLAS USER’S MANUAL, VOL. I. There are three user-definable parameters for the Klaassen band gap narrowing model. The BGN.E parameter has a linear dependency on doping concentration and has the default value of 6.92e-3 volts. BGN.C has a square root dependency with doping concentration and has the default value of 0.5. BGN.N is the value of doping where band gap narrowing effectively starts to take effect and has a default value of 1.3e17/ cm3. The equivalent default setting consequently should be written as:

MATERIAL BGN.E=6.92e-3 BGN.C=0.5 BGN.N=1.3e17

You can alter these parameters to modify the current gain of the device in the medium injection regime. For example, reducing the linear parameter from 6.92e-3 to 6.5e-3 is sufficient to cause a significant increase in current gain in the medium injection region. Although the bandgap narrowing parameters affect both collector and base currents, the base current is affected to a greater degree. The most sensitive plot to see the effect of small changes to bandgap narrowing is a plot of current gain versus log of collector current. A reduction in bandgap narrowing will result in an increase in current gain in the medium current injection region.

7.9.5: The Base Current Profile – Low Injection

This is one case where there is an interdependency on one parameter, since the intrinsic base resistance not only affects the collector current in all regions (see the previous section) Figure 7.43, however, also has an effect on the base current in the low injection region.

For a small range of implant doses around the optimum, the base doping concentration will also affect the position of the knee or the rate or both of fall off of the base current in the low injection operating region of the device. This is most noticeable as a loss of current gain in the low injection region for the alternative standard plot of current gain versus collector current. An increase in the base implant reduces the intrinsic resistance and typically increases the base current in the low injection region, resulting in a decrease in current gain for very low currents.

A similar effect to increasing the base doping is observed if the base doping is kept constant but the overall doping is reduced in the mono-crystalline silicon region of the emitter. You can tune the doping profile in the mono-crystalline region of the emitter using three parameters in ATHENA. The main physical effect of these ATHENA parameters is to change the doping profile of the emitter in the mono- crystalline silicon. These process parameters are as follows:

• The total interstitial concentration in the poly-emitter.

• The dopant segregation effects in the poly-emitter.

• The dopant velocity across the silicon/polysilicon boundary.

The first process parameter will affect how quickly the dopant in an implanted poly-emitter reaches the silicon/polysilicon boundary during the RTA diffusion and therefore affects the total diffusion of dopant into the single crystalline part of the emitter and the base width doping profile.

The second process parameter affects dopant pile-up at the poly-silicon/silicon boundary and therefore the source doping concentration at the mono-crystalline interface. Once again, this will affect the overall doping profile of the emitter in the mono-crystalline region of the device.

The third process parameter affects the velocity of transport of dopant across the polysilicon/silicon boundary with similar effects to the parameters above.

You can use these parameters to tailor the emitter doping profile in the mono-crystalline silicon region to match available measured data, usually in the form of SIMS or capacitance information. An accurate profile of dopant in the poly-silicon part of the emitter is not too important if measured data concerning interfacial dopant concentrations is available. This is because the work function of the poly-emitter will be set in ATLAS by defining the poly-emitter as an electrode. All you need to calculate the correct work function at the poly-silicon emitter is the interfacial doping concentration at the poly- silicon/silicon interface on the poly side of the junction. See the “Poly-emitter work function” Section on page 2-51 for setting the correct work function for the poly-emitter .


By using a logical combination of tuning parameters available in both the process simulator (ATHENA) and the device simulator (ATLAS) and with the influence of each parameter, you can get a good match for bipolar transistors for most device designs.

Since it is usually less problematic to match the collector current for all levels of applied base-emitter voltage compared to the matching of base current, you will probably find that more time is spent trying to match the base current for very small and very large values of applied base-emitter voltage. You should, however, spend a good amount of time on making sure that the correct process models are used in the process flow to reduce the overall uncertainty as to which parameters require calibration.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Solid state physics and devices-the harbinger of third wave of civilization. OpenStax CNX. Sep 15, 2014 Download for free at http://legacy.cnx.org/content/col11170/1.89
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Solid state physics and devices-the harbinger of third wave of civilization' conversation and receive update notifications?