# 8.2 Centripetal force

 Page 1 / 10
• Calculate coefficient of friction on a car tire.
• Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force    . The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: net $\text{F}=\text{ma}$ . For uniform circular motion, the acceleration is the centripetal acceleration— $a={a}_{c}$ . Thus, the magnitude of centripetal force ${\text{F}}_{\text{c}}$ is

${\text{F}}_{\text{c}}={m\text{a}}_{\text{c}}.$

By using the expressions for centripetal acceleration ${a}_{c}$ from ${a}_{c}=\frac{{v}^{2}}{r};\phantom{\rule{0.25em}{0ex}}{a}_{c}={\mathrm{r\omega }}^{2}$ , we get two expressions for the centripetal force ${\text{F}}_{\text{c}}$ in terms of mass, velocity, angular velocity, and radius of curvature:

${F}_{c}=m\frac{{v}^{2}}{r};\phantom{\rule{0.25em}{0ex}}{F}_{c}=\text{mr}{\omega }^{2}.$

You may use whichever expression for centripetal force is more convenient. Centripetal force ${F}_{\text{c}}$ is always perpendicular to the path and pointing to the center of curvature, because ${\mathbf{a}}_{c}$ is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for $r$ , you get

$r=\frac{{\mathrm{mv}}^{2}}{{F}_{c}}\text{.}$

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

## What coefficient of friction do car tires need on a flat curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason that keeps the car from slipping (see [link] ).

Strategy and Solution for (a)

We know that ${F}_{\text{c}}=\frac{{\mathrm{mv}}^{\text{2}}}{r}$ . Thus,

${F}_{\text{c}}=\frac{{\mathrm{mv}}^{\text{2}}}{r}=\frac{\left(\text{900 kg}\right)\left(\text{25.0 m/s}{\right)}^{\text{2}}}{\left(\text{500 m}\right)}=\text{1125 N.}$

Strategy for (b)

[link] shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do not slip) is ${\mu }_{\text{s}}N$ , where ${\mu }_{\text{s}}$ is the static coefficient of friction and N is the normal force. The normal force equals the car’s weight on level ground, so that $N=\mathit{mg}$ . Thus the centripetal force in this situation is

${F}_{\text{c}}=f={\mu }_{\text{s}}N={\mu }_{\text{s}}\text{mg}\text{.}$

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for ${F}_{\text{c}}$ from the equation

$\begin{array}{c}{F}_{\text{c}}=m\frac{{v}^{2}}{r}\\ {F}_{\text{c}}=\text{mr}{\omega }^{2}\end{array}\right\},$

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!