<< Chapter < Page Chapter >> Page >
Subtractive synthesis techniques often require a wideband excitation source such as a pulse train to drive a time-varying digital filter. Traditional rectangular pulses have theoretically infinite bandwidth, and therefore always introduce aliasing noise into the input signal. A band-limited pulse (BLP) source is free of aliasing problems, and is more suitable for subtractive synthesis algorithms. The mathematics of the band-limited pulse is presented, and a LabVIEW VI is developed to implement the BLP source. An audio demonstration is included.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Introduction

Subtractive synthesis techniques apply a filter (usually time-varying) to a wideband excitation source such as noise or a pulse train. The filtershapes the wideband spectrum into the desired spectrum. The excitation/filter technique describes the sound-producing mechanism of many types of physical instruments as well as the human voice, makingsubtractive synthesis an attractive method for physical modeling of real instruments.

A pulse train , a repetitive series of pulses, provides an excitation source that has a perceptible pitch, so in a sense the excitation spectrum is "pre-shaped" before applying it to a filter.Many types of musical instruments use some sort of pulse train as an excitation, notably wind instruments such as brass (e.g., trumpet, trombone, and tuba) and woodwinds (e.g., clarinet, saxophone, oboe, and bassoon). Likewise, the humanvoice begins as a series of pulses produced by vocal cord vibrations, which can be considered the "excitation signal" to the vocal and nasal tract that acts as a resonant cavity to amplify and filterthe "signal."

Traditional rectangular pulse shapes have significant spectral energy contained in harmonics that extend beyond the folding frequency (half of the sampling frequency). These harmonics are subject to aliasing , and are "folded back" into the principal alias , i.e., the spectrum between 0 and f s / 2 . The aliased harmonics are distinctly audible as high-frequency tones that, since undesired, qualify as noise.

The band-limited pulse , however, is free of aliasing problems because its maximum harmonic can be chosen to be below the folding frequency. In this module the mathematics of the band-limited pulse aredeveloped, and a band-limited pulse generator is implemented in LabVIEW.

Mathematical development of the band-limited pulse

By definition, a band-limited pulse has zero spectral energy beyond some determined frequency. You can use a truncated Fourier series to create a series of harmonics, or sinusoids, as in :

x ( t ) = k = 1 N sin ( 2 π k f 0 t ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacIcacaWG0bGaaiykaiabg2da9maaqahabaGaci4CaiaacMgacaGGUbGaaiikaiaaikdacqaHapaCcaWGRbGaamOzamaaBaaaleaacaaIWaaabeaakiaadshacaGGPaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@49C4@

The screencast video shows how to implement in LabVIEW by introducing the "Tones and Noise" built-in subVI that is part of the "Signal Processing" palette. The video includes a demonstration that relatesthe time-domain pulse shape, spectral behavior, and audible sound of the band-limited pulse.

Download the finished VI from the video: blp_demo.vi . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Band-limited pulse generator in LabVIEW using "Tones and Noise" built-in subVI

The truncated Fourier series approach works fine for off-line or batch-mode signal processing. However, in a real-time application the computational cost of generating individual sinusoids becomes prohibitive, especially when a fairly dense spectrumis required (for example, 50 sinusoids).

A closed-form version of the truncated Fourier series equation is presented in (refer to Moore in "References" section below):

x ( t ) = k = 1 N sin ( k θ ) = sin [ ( N + 1 ) θ 2 ] sin ( N θ 2 ) sin ( θ 2 ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacIcacaWG0bGaaiykaiabg2da9maaqahabaGaci4CaiaacMgacaGGUbGaaiikaiaadUgacqaH4oqCcaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbWaamWaaeaacaGGOaGaamOtaiabgUcaRiaaigdacaGGPaWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaaWcbaGaam4Aaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiGacohacaGGPbGaaiOBamaabmaabaGaamOtamaalaaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaamaalaaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaaaaaaaa@60FB@

where

θ = 2 π f 0 t MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaeyypa0JaaGOmaiabec8aWjaadAgadaWgaaWcbaGaaGimaaqabaGccaWG0baaaa@3D44@ . The closed-form version of the summation requires only three sinusoidal oscillators yet can produce an arbitrary number of sinusoidal components.

Implementing contains one significant challenge, however. Note the ratio of two sinusoids on the far right of the equation. The denominator sinusoid periodically passes through zero, leading to a divide-by-zero error. However, because the numerator sinusoidoperates at a frequency that is N times higher, the numerator sinusoid also approaches zero whenever the lower-frequency denominator sinusoid approaches zero. This "0/0" condition converges to either N or -N; the sign can be inferred by looking at adjacent samples.

References

  • Moore, F.R., "Elements of Computer Music," Prentice-Hall, 1990, ISBN 0-13-252552-6.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview (all modules). OpenStax CNX. Jan 05, 2010 Download for free at http://cnx.org/content/col10507/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview (all modules)' conversation and receive update notifications?

Ask