# 8.2 Angular acceleration  (Page 2/6)

 Page 2 / 6

If the bicycle in the preceding example had been on its wheels instead of upside-down, it would first have accelerated along the ground and then come to a stop. This connection between circular motion and linear motion needs to be explored. For example, it would be useful to know how linear and angular acceleration are related. In circular motion, linear acceleration is tangent to the circle at the point of interest, as seen in [link] . Thus, linear acceleration is called tangential acceleration     ${a}_{\text{t}}$ .

Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction. We know from Uniform Circular Motion and Gravitation that in circular motion centripetal acceleration, ${a}_{\text{c}}$ , refers to changes in the direction of the velocity but not its magnitude. An object undergoing circular motion experiences centripetal acceleration, as seen in [link] . Thus, ${a}_{\text{t}}$ and ${a}_{\text{c}}$ are perpendicular and independent of one another. Tangential acceleration ${a}_{\text{t}}$ is directly related to the angular acceleration $\alpha$ and is linked to an increase or decrease in the velocity, but not its direction.

Now we can find the exact relationship between linear acceleration ${a}_{\text{t}}$ and angular acceleration $\alpha$ . Because linear acceleration is proportional to a change in the magnitude of the velocity, it is defined (as it was in One-Dimensional Kinematics ) to be

${a}_{\text{t}}=\frac{\Delta v}{\Delta t}\text{.}$

For circular motion, note that $v=\mathrm{r\omega }$ , so that

${a}_{\text{t}}=\frac{\Delta \left(\mathrm{r\omega }\right)}{\Delta t}\text{.}$

The radius $r$ is constant for circular motion, and so $\text{Δ}\left(\mathrm{r\omega }\right)=r\left(\Delta \omega \right)$ . Thus,

${a}_{\text{t}}=r\frac{\Delta \omega }{\Delta t}\text{.}$

By definition, $\alpha =\frac{\Delta \omega }{\Delta t}$ . Thus,

${a}_{\text{t}}=\mathrm{r\alpha },$

or

$\alpha =\frac{{a}_{\text{t}}}{r}.$

These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the angular acceleration is, the larger the linear (tangential) acceleration is, and vice versa. For example, the greater the angular acceleration of a car’s drive wheels, the greater the acceleration of the car. The radius also matters. For example, the smaller a wheel, the smaller its linear acceleration for a given angular acceleration $\alpha$ .

## Calculating the angular acceleration of a motorcycle wheel

A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular acceleration of its 0.320-m-radius wheels? (See [link] .)

Strategy

We are given information about the linear velocities of the motorcycle. Thus, we can find its linear acceleration ${a}_{\text{t}}$ . Then, the expression $\alpha =\frac{{a}_{\text{t}}}{r}$ can be used to find the angular acceleration.

Solution

The linear acceleration is

$\begin{array}{lll}{a}_{\text{t}}& =& \frac{\Delta v}{\Delta t}\\ & =& \frac{\text{30.0 m/s}}{\text{4.20 s}}\\ & =& \text{7.14}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}.\end{array}$

We also know the radius of the wheels. Entering the values for ${a}_{\text{t}}$ and $r$ into $\alpha =\frac{{a}_{\text{t}}}{r}$ , we get

$\begin{array}{lll}\alpha & =& \frac{{a}_{\text{t}}}{r}\\ & =& \frac{\text{7.14}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}}{\text{0.320 m}}\\ & =& \text{22.3}\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}.\end{array}$

Discussion

Units of radians are dimensionless and appear in any relationship between angular and linear quantities.

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!