<< Chapter < Page Chapter >> Page >
  • Derive the equation for rotational work.
  • Calculate rotational kinetic energy.
  • Demonstrate the Law of Conservation of Energy.

In this module, we will learn about work and energy associated with rotational motion. [link] shows a worker using an electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from the pole. The stone continues to turn even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly, the motor had to work to get the stone spinning. This work went into heat, light, sound, vibration, and considerable rotational kinetic energy    .

The figure shows a mechanic cutting metal with a metal grinder. The sparks are emerging from the point of contact and jumping off tangentially from the cutter.
The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light, sound, and vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion and Gravitation for translational motion, and we can build on that knowledge when considering work done in rotational motion. The simplest rotational situation is one in which the net force is exerted perpendicular to the radius of a disk (as shown in [link] ) and remains perpendicular as the disk starts to rotate. The force is parallel to the displacement, and so the net work done is the product of the force times the arc length traveled:

net W = ( net F ) Δ s . size 12{"net "W= left ("net "F right ) cdot Δs} {}

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by r size 12{r} {} , and gather terms:

net W = ( r net F ) Δ s r . size 12{"net"W= left (r" net "F right ) { {Δs} over {r} } } {}

We recognize that r net F = net τ size 12{r" net "F=" net "τ} {} and Δ s / r = θ size 12{Δs/r=θ} {} , so that

net W = net τ θ . size 12{"net "W= left ("net "τ right )θ} {}

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation net W = net τ θ size 12{"net "W= left ("net "τ right )θ} {} is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first step is to note that net τ = size 12{"net "W=Iα} {} , so that

net W = I αθ . size 12{"net "W=I ital "αθ"} {}
The figure shows a circular disc of radius r. A net force F is applied perpendicular to the radius, rotating the disc in an anti-clockwise direction and producing a displacement equal to delta S, in a direction parallel to the direction of the force applied. The angle covered is theta.
The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus net F Δ s size 12{ left ("net "F right ) cdot Δs} {} . The net work goes into rotational kinetic energy.

Making connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first presented in Uniform Circular Motion and Gravitation .

Now, we solve one of the rotational kinematics equations for αθ size 12{ ital "αθ"} {} . We start with the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Next, we solve for αθ size 12{ ital "αθ"} {} :

αθ = ω 2 ω 0 2 2 . size 12{ ital "αθ"= { {ω rSup { size 8{2} } - ω rSub { size 8{0} rSup { size 8{2} } } } over {2} } } {}

Substituting this into the equation for net W size 12{W} {} and gathering terms yields

net W = 1 2 2 1 2 I ω 0 2 . size 12{"net "W= { {1} over {2} } Iω rSup { size 8{2} } - { {1} over {2} } Iω rSub { size 8{0} rSup { size 8{2} } } } {}

This equation is the work-energy theorem    for rotational motion only. As you may recall, net work changes the kinetic energy of a system. Through an analogy with translational motion, we define the term 1 2 2 size 12{ left ( { {1} over {2} } right )Iω rSup { size 8{2} } } {} to be rotational kinetic energy     KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} for an object with a moment of inertia I size 12{I} {} and an angular velocity ω size 12{ω} {} :

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics arranged for cpslo phys141. OpenStax CNX. Dec 23, 2014 Download for free at http://legacy.cnx.org/content/col11718/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics arranged for cpslo phys141' conversation and receive update notifications?

Ask