<< Chapter < Page Chapter >> Page >

Hyperbolas also have interesting reflective properties. A ray directed toward one focus of a hyperbola is reflected by a hyperbolic mirror toward the other focus. This concept is illustrated in the following figure.

A hyperbola is drawn that is open to the right and left. There is a ray pointing to a point on the right hyperbola marked “Light from star.” It hits a “Mirror surface” and bounces to the focus on the other side of the hyperbola. There is dashed line from where the point hits the mirror surface to the focus on that side of the hyperbola.
A hyperbolic mirror used to collect light from distant stars.

This property of the hyperbola has important applications. It is used in radio direction finding (since the difference in signals from two towers is constant along hyperbolas), and in the construction of mirrors inside telescopes (to reflect light coming from the parabolic mirror to the eyepiece). Another interesting fact about hyperbolas is that for a comet entering the solar system, if the speed is great enough to escape the Sun’s gravitational pull, then the path that the comet takes as it passes through the solar system is hyperbolic.

Eccentricity and directrix

An alternative way to describe a conic section involves the directrices, the foci, and a new property called eccentricity. We will see that the value of the eccentricity of a conic section can uniquely define that conic.

Definition

The eccentricity     e of a conic section is defined to be the distance from any point on the conic section to its focus, divided by the perpendicular distance from that point to the nearest directrix. This value is constant for any conic section, and can define the conic section as well:

  1. If e = 1 , the conic is a parabola.
  2. If e < 1 , it is an ellipse.
  3. If e > 1 , it is a hyperbola.

The eccentricity of a circle is zero. The directrix of a conic section is the line that, together with the point known as the focus, serves to define a conic section. Hyperbolas and noncircular ellipses have two foci and two associated directrices. Parabolas have one focus and one directrix.

The three conic sections with their directrices appear in the following figure.

This figure has three figures. In the first is an ellipse, with center at the origin, foci at (c, 0) and (−c, 0), half of its vertical height being b, half of its horizontal length being a, and directrix x = ±a2/c. The second figure is a parabola with vertex at the origin, focus (a, 0), and directrix x = −a. The third figure is a hyperbola with center at the origin, foci at (c, 0) and (−c, 0), vertices at (a, 0) and (−a, 0), and directices at x = ±a2/c.
The three conic sections with their foci and directrices.

Recall from the definition of a parabola that the distance from any point on the parabola to the focus is equal to the distance from that same point to the directrix. Therefore, by definition, the eccentricity of a parabola must be 1. The equations of the directrices of a horizontal ellipse are x = ± a 2 c . The right vertex of the ellipse is located at ( a , 0 ) and the right focus is ( c , 0 ) . Therefore the distance from the vertex to the focus is a c and the distance from the vertex to the right directrix is a 2 c c . This gives the eccentricity as

e = a c a 2 c a = c ( a c ) a 2 a c = c ( a c ) a ( a c ) = c a .

Since c < a , this step proves that the eccentricity of an ellipse is less than 1. The directrices of a horizontal hyperbola are also located at x = ± a 2 c , and a similar calculation shows that the eccentricity of a hyperbola is also e = c a . However in this case we have c > a , so the eccentricity of a hyperbola is greater than 1.

Determining eccentricity of a conic section

Determine the eccentricity of the ellipse described by the equation

( x 3 ) 2 16 + ( y + 2 ) 2 25 = 1 .

From the equation we see that a = 5 and b = 4 . The value of c can be calculated using the equation a 2 = b 2 + c 2 for an ellipse. Substituting the values of a and b and solving for c gives c = 3 . Therefore the eccentricity of the ellipse is e = c a = 3 5 = 0.6 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask