<< Chapter < Page Chapter >> Page >
  • Calculate thermal conductivity.
  • Observe conduction of heat in collisions.
  • Study thermal conductivities of common substances.
The figure shows an insulated wooden partition in a house. The partition is insulated because it encapsulates a cloth-type material.
Insulation is used to limit the conduction of heat from the inside to the outside (in winters) and from the outside to the inside (in summers). (credit: Giles Douglas)

Your feet feel cold as you walk barefoot across the living room carpet in your cold house and then step onto the kitchen tile floor. This result is intriguing, since the carpet and tile floor are both at the same temperature. The different sensation you feel is explained by the different rates of heat transfer: the heat loss during the same time interval is greater for skin in contact with the tiles than with the carpet, so the temperature drop is greater on the tiles.

Some materials conduct thermal energy faster than others. In general, good conductors of electricity (metals like copper, aluminum, gold, and silver) are also good heat conductors, whereas insulators of electricity (wood, plastic, and rubber) are poor heat conductors. [link] shows molecules in two bodies at different temperatures. The (average) kinetic energy of a molecule in the hot body is higher than in the colder body. If two molecules collide, an energy transfer from the molecule with greater kinetic energy to the molecule with less kinetic energy occurs. The cumulative effect from all collisions results in a net flux of heat from the hot body to the colder body. The heat flux thus depends on the temperature difference Δ Τ = Τ hot T cold size 12{ΔΤ=Τ rSub { size 8{"hot"} } - T rSub { size 8{"cold"} } } {} . Therefore, you will get a more severe burn from boiling water than from hot tap water. Conversely, if the temperatures are the same, the net heat transfer rate falls to zero, and equilibrium is achieved. Owing to the fact that the number of collisions increases with increasing area, heat conduction depends on the cross-sectional area. If you touch a cold wall with your palm, your hand cools faster than if you just touch it with your fingertip.

The figure shows a vertical line labeled “surface” that divides the figure in two. Just below the line is a horizontal rightward wavy arrow labeled Q, heat conduction. The area left of the surface line is labeled higher temperature and the area right of the surface line is labeled lower temperature. One spherical object, labeled “high energy before collision” is on the left bottom side, with an arrow from it pointing to the right and up toward the vertical midpoint of the surface line. There is another spherical object at the top left side close to the surface line with an arrow from it pointing to the left and up. A third spherical object labeled “low energy before collision” appears on the right top side with an arrow pointing from it to the left and down toward the vertical midpoint of the surface line. There is a final spherical object at the lower right side close to the surface line with an arrow pointing from it to the right and down. There are dotted lines coming from all the four particles, merging at the midpoint on the surface line.
The molecules in two bodies at different temperatures have different average kinetic energies. Collisions occurring at the contact surface tend to transfer energy from high-temperature regions to low-temperature regions. In this illustration, a molecule in the lower temperature region (right side) has low energy before collision, but its energy increases after colliding with the contact surface. In contrast, a molecule in the higher temperature region (left side) has high energy before collision, but its energy decreases after colliding with the contact surface.

A third factor in the mechanism of conduction is the thickness of the material through which heat transfers. The figure below shows a slab of material with different temperatures on either side. Suppose that T 2 size 12{T rSub { size 8{2} } } {} is greater than T 1 size 12{T rSub { size 8{1} } } {} , so that heat is transferred from left to right. Heat transfer from the left side to the right side is accomplished by a series of molecular collisions. The thicker the material, the more time it takes to transfer the same amount of heat. This model explains why thick clothing is warmer than thin clothing in winters, and why Arctic mammals protect themselves with thick blubber.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Abe advanced level physics. OpenStax CNX. Jul 11, 2013 Download for free at http://legacy.cnx.org/content/col11534/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Abe advanced level physics' conversation and receive update notifications?