<< Chapter < Page Chapter >> Page >
Confidence Interval for a Population Proportion is part of the collection col10555 written by Barbara Illowsky and Susan Dean with contributions from Roberta Bloom.

During an election year, we see articles in the newspaper that state confidence intervals in terms of proportions or percentages. For example, a poll for a particular candidate running for president might show that the candidate has 40% of the votewithin 3 percentage points. Often, election polls are calculated with 95% confidence. So, the pollsters would be 95% confident that the true proportion of voters whofavored the candidate would be between 0.37 and 0.43 : ( 0.40 - 0.03 , 0.40 + 0.03 ) .

Investors in the stock market are interested in the true proportion of stocks that go up and down each week. Businesses that sell personal computers are interested in theproportion of households in the United States that own personal computers. Confidence intervals can be calculated for the true proportion of stocks that go up ordown each week and for the true proportion of households in the United States that own personal computers.

The procedure to find the confidence interval, the sample size, the error bound, and the confidence level for a proportion is similar to that for the population mean. The formulas are different.

How do you know you are dealing with a proportion problem? First, the underlying distribution is binomial . (There is no mention of a mean or average.) If X is a binomial random variable, then X ~ B ( n , p ) where n = the number of trials and p = the probability of a success. To form a proportion, take X , the random variable for the number of successes and divide it by n , the number of trials (or the sample size). The random variable P ' (read "P prime") is that proportion,

P ' = X n

(Sometimes the random variable is denoted as P ̂ , read "P hat".)

When n is large and p is not close to 0 or 1, we can use the normal distribution to approximate the binomial.

X ~ N ( n p , n p q )

If we divide the random variable by n , the mean by n , and the standard deviation by n , we get a normal distribution of proportions with P ' , called the estimated proportion, as the random variable. (Recall that a proportion = thenumber of successes divided by n .)

X n = P ' ~ N ( n p n , n p q n )

Using algebra to simplify : n p q n = p q n

P ' follows a normal distribution for proportions : P ' ~ N ( p , p q n )

The confidence interval has the form ( p ' - EBP , p ' + EBP ) .

p ' = x n

p ' = the estimated proportion of successes ( p ' is a point estimate for p , the true proportion)

x = the number of successes.

n = the size of the sample

The error bound for a proportion is

EBP = z α 2 p ' q ' n where q ' = 1 - p '

This formula is similar to the error bound formula for a mean, except that the "appropriate standard deviation" is different. For a mean, when the population standard deviation is known, the appropriate standard deviation that we use is σ n . For a proportion, the appropriate standard deviation is p q n .

However, in the error bound formula, we use p ' q ' n as the standard deviation, instead of p q n

However, in the error bound formula, the standard deviation is p ' q ' n .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Collaborative statistics (custom lecture version modified by t. short). OpenStax CNX. Jul 15, 2013 Download for free at http://cnx.org/content/col11543/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics (custom lecture version modified by t. short)' conversation and receive update notifications?

Ask