<< Chapter < Page Chapter >> Page >
In this module, a case study about electronic waste and extended producer responsibility is presented.

Electronic waste, commonly known as e-waste, refers to discarded electronic products such as televisions, computers and computer peripherals (e.g. monitors, keyboards, disk drives, and printers), telephones and cellular phones, audio and video equipment, video cameras, fax and copy machines, video game consoles, and others (see Figure Electronic Waste ).

photograph of Electronic Waste
Electronic Waste Photograph shows many computers piled up in a parking lot as waste. Source: Bluedisk via Wikimedia Commons

In the United States, it is estimated that about 3 million tons of e-waste are generated each year. This waste quantity includes approximately 27 million units of televisions, 205 million units of computer products, and 140 million units of cell phones. Less than 15 to 20 percent of the e-waste is recycled or refurbished; the remaining percentage is commonly disposed of in landfills and/or incinerated. It should be noted that e-waste constitutes less than 4 percent of total solid waste generated in the United States. However, with tremendous growth in technological advancements in the electronics industry, many electronic products are becoming obsolete quickly, thus increasing the production of e-waste at a very rapid rate. The quantities of e-waste generated are also increasing rapidly in other countries such as India and China due to high demand for computers and cell phones.

In addition to the growing quantity of e-waste, the hazardous content of e-waste is a major environmental concern and poses risks to the environment if these wastes are improperly managed once they have reached the end of their useful life. Many e-waste components consist of toxic substances, including heavy metals such as lead, copper, zinc, cadmium, and mercury as well as organic contaminants, such as flame retardants (polybrominated biphenyls and polybrominated diphenylethers). The release of these substances into the environment and subsequent human exposure can lead to serious health and pollution issues. Concerns have also been raised with regards to the release of toxic constituents of e-waste into the environment if landfilling and/or incineration options are used to manage the e-waste.

Various regulatory and voluntary programs have been instituted to promote reuse, recycling and safe disposal of bulk e-waste. Reuse and refurbishing has been promoted to reduce raw material use energy consumption, and water consumption associated with the manufacture of new products. Recycling and recovery of elements such as lead, copper, gold, silver and platinum can yield valuable resources which otherwise may cause pollution if improperly released into the environment. The recycling and recovery operations have to be conducted with extreme care, as the exposure of e-waste components can result in adverse health impacts to the workers performing these operations. For economic reasons, recycled e-waste is often exported to other countries for recovery operations. However, lax regulatory environments in many of these countries can lead to unsafe practices or improper disposal of bulk residual e-waste, which in turn can adversely affect vulnerable populations.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask