<< Chapter < Page Chapter >> Page >
In this module, a case study about electronic waste and extended producer responsibility is presented.

Electronic waste, commonly known as e-waste, refers to discarded electronic products such as televisions, computers and computer peripherals (e.g. monitors, keyboards, disk drives, and printers), telephones and cellular phones, audio and video equipment, video cameras, fax and copy machines, video game consoles, and others (see Figure Electronic Waste ).

photograph of Electronic Waste
Electronic Waste Photograph shows many computers piled up in a parking lot as waste. Source: Bluedisk via Wikimedia Commons

In the United States, it is estimated that about 3 million tons of e-waste are generated each year. This waste quantity includes approximately 27 million units of televisions, 205 million units of computer products, and 140 million units of cell phones. Less than 15 to 20 percent of the e-waste is recycled or refurbished; the remaining percentage is commonly disposed of in landfills and/or incinerated. It should be noted that e-waste constitutes less than 4 percent of total solid waste generated in the United States. However, with tremendous growth in technological advancements in the electronics industry, many electronic products are becoming obsolete quickly, thus increasing the production of e-waste at a very rapid rate. The quantities of e-waste generated are also increasing rapidly in other countries such as India and China due to high demand for computers and cell phones.

In addition to the growing quantity of e-waste, the hazardous content of e-waste is a major environmental concern and poses risks to the environment if these wastes are improperly managed once they have reached the end of their useful life. Many e-waste components consist of toxic substances, including heavy metals such as lead, copper, zinc, cadmium, and mercury as well as organic contaminants, such as flame retardants (polybrominated biphenyls and polybrominated diphenylethers). The release of these substances into the environment and subsequent human exposure can lead to serious health and pollution issues. Concerns have also been raised with regards to the release of toxic constituents of e-waste into the environment if landfilling and/or incineration options are used to manage the e-waste.

Various regulatory and voluntary programs have been instituted to promote reuse, recycling and safe disposal of bulk e-waste. Reuse and refurbishing has been promoted to reduce raw material use energy consumption, and water consumption associated with the manufacture of new products. Recycling and recovery of elements such as lead, copper, gold, silver and platinum can yield valuable resources which otherwise may cause pollution if improperly released into the environment. The recycling and recovery operations have to be conducted with extreme care, as the exposure of e-waste components can result in adverse health impacts to the workers performing these operations. For economic reasons, recycled e-waste is often exported to other countries for recovery operations. However, lax regulatory environments in many of these countries can lead to unsafe practices or improper disposal of bulk residual e-waste, which in turn can adversely affect vulnerable populations.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask