# 7.1 Second-order linear equations  (Page 4/15)

 Page 4 / 15

## General solution to a homogeneous equation

If ${y}_{1}\left(x\right)$ and ${y}_{2}\left(x\right)$ are linearly independent solutions to a second-order, linear, homogeneous differential equation, then the general solution is given by

$y\left(x\right)={c}_{1}{y}_{1}\left(x\right)+{c}_{2}{y}_{2}\left(x\right),$

where ${c}_{1}$ and ${c}_{2}$ are constants.

When we say a family of functions is the general solution to a differential equation , we mean that (1) every expression of that form is a solution and (2) every solution to the differential equation can be written in that form, which makes this theorem extremely powerful. If we can find two linearly independent solutions to a differential equation, we have, effectively, found all solutions to the differential equation—quite a remarkable statement. The proof of this theorem is beyond the scope of this text.

## Writing the general solution

If ${y}_{1}\left(t\right)={e}^{3t}$ and ${y}_{2}\left(t\right)={e}^{-3t}$ are solutions to $y\text{″}-9y=0,$ what is the general solution?

Note that ${y}_{1}$ and ${y}_{2}$ are not constant multiples of one another, so they are linearly independent. Then, the general solution to the differential equation is $y\left(t\right)={c}_{1}{e}^{3t}+{c}_{2}{e}^{-3t}.$

If ${y}_{1}\left(x\right)={e}^{3x}$ and ${y}_{2}\left(x\right)=x{e}^{3x}$ are solutions to $y\text{″}-6{y}^{\prime }+9y=0,$ what is the general solution?

$y\left(x\right)={c}_{1}{e}^{3x}+{c}_{2}x{e}^{3x}$

## Second-order equations with constant coefficients

Now that we have a better feel for linear differential equations, we are going to concentrate on solving second-order equations of the form

$ay\text{″}+b{y}^{\prime }+cy=0,$

where $a,$ $b,$ and $c$ are constants.

Since all the coefficients are constants, the solutions are probably going to be functions with derivatives that are constant multiples of themselves. We need all the terms to cancel out, and if taking a derivative introduces a term that is not a constant multiple of the original function, it is difficult to see how that term cancels out. Exponential functions have derivatives that are constant multiples of the original function, so let’s see what happens when we try a solution of the form $y\left(x\right)={e}^{\lambda x},$ where $\lambda$ (the lowercase Greek letter lambda) is some constant.

If $y\left(x\right)={e}^{\lambda x},$ then ${y}^{\prime }\left(x\right)=\lambda {e}^{\lambda x}$ and $y\text{″}={\lambda }^{2}{e}^{\lambda x}.$ Substituting these expressions into [link] , we get

$\begin{array}{cc}\hfill ay\text{″}+b{y}^{\prime }+cy& =a\left({\lambda }^{2}{e}^{\lambda x}\right)+b\left(\lambda {e}^{\lambda x}\right)+c{e}^{\lambda x}\hfill \\ & ={e}^{\lambda x}\left(a{\lambda }^{2}+b\lambda +c\right).\hfill \end{array}$

Since ${e}^{\lambda x}$ is never zero, this expression can be equal to zero for all x only if

$a{\lambda }^{2}+b\lambda +c=0.$

We call this the characteristic equation of the differential equation.

## Definition

The characteristic equation    of the differential equation $ay\text{″}+b{y}^{\prime }+cy=0$ is $a{\lambda }^{2}+b\lambda +c=0.$

The characteristic equation is very important in finding solutions to differential equations of this form. We can solve the characteristic equation either by factoring or by using the quadratic formula

$\lambda =\frac{\text{−}b±\sqrt{{b}^{2}-4ac}}{2a}.$

This gives three cases. The characteristic equation has (1) distinct real roots; (2) a single, repeated real root; or (3) complex conjugate roots. We consider each of these cases separately.

## Distinct real roots

If the characteristic equation has distinct real roots ${\lambda }_{1}$ and ${\lambda }_{2},$ then ${e}^{{\lambda }_{1}x}$ and ${e}^{{\lambda }_{2}x}$ are linearly independent solutions to [link] , and the general solution is given by

$y\left(x\right)={c}_{1}{e}^{{\lambda }_{1}x}+{c}_{2}{e}^{{\lambda }_{2}x},$

where ${c}_{1}$ and ${c}_{2}$ are constants.

For example, the differential equation $y\text{″}+9{y}^{\prime }+14y=0$ has the associated characteristic equation ${\lambda }^{2}+9\lambda +14=0.$ This factors into $\left(\lambda +2\right)\left(\lambda +7\right)=0,$ which has roots ${\lambda }_{1}=-2$ and ${\lambda }_{2}=-7.$ Therefore, the general solution to this differential equation is

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!