# 7.1 Encoding information in audio for watermarking

 Page 1 / 1
This module details the primary three algorithms explored for encoding digital data in audio as part of the fall 2008 ELEC 301 class project.

## Encoding

Our three encoding algorithms all begin the same way. First we take the user-defined constant for the number of segments and split the input signal in the time domain. Each segment represents a possible bit of hidden data. More segments mean more bits and a higher data rate, but it also means fewer samples from which to decode.

Whenever we wish to encode a one we alter the time chunk according to the algorithm. To encode a zero we leave the segment alone. After altering (or not altering) each segment, we take the Inverse Fourier Transform if needed and recombine them into our marked ŝ(t).

In this algorithm we take advantage of frequency masking. Since the human ear cannot hear quieter frequencies next to a louder frequency, we alter these values. To encode a one we find the Fourier Transform for each segment of time and find the max value of this transform. Then we scale the neighboring values on either side by some scalar α<1.

The case where the max value is close to the edge of our segment is slightly more complicated. We chose to alter the values on the non-edge side as normal and to alter as many samples on the edge side as existed.

We cannot encode a bit if the maximum value is zero or if the neighboring frequencies are too small (according to some predefined value).

Testing revealed that α = .5 was clearly audible for all of our test files, but α =.95 was not enough of a difference for the computer to reliably detect.

## Phase-shifting algorithm (psa)

In this algorithm we take advantage of the fact that the human ear cannot hear slight variations in phase. To encode a one we find the Fourier Transform of each time segment and slightly alter the phase by a predefined value.

We cannot encode a bit if most of the values are zero.

Testing revealed that a phase shift of .25π is audible, while a phase shift of .001π became hard for the computer to detect.

## Echo algorithm (ea)

Here we use the fact that our test suit is comprised of music and already have some amount of echo. Adding a slight amount more does not make an audible difference. To encode a one we shift the segment by some predefined value, de-amplify it by some scalar α<1, and add this echo back to the original segment.

We cannot encode a bit if most of the values are zero.

Testing revealed that an echo de-amplified to .2 was audible, while a de-amplification by .0001 was not reliably detected. Also a 30 sample delayed echo was inaudible to the human ear.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!