<< Chapter < Page Chapter >> Page >
This module provides an overview of architectures and methods for hyperspectral imaging using the ideas of compressive sensing.

Standard digital color images of a scene of interest consist of three components – red, green and blue – which contain the intensity level for each of the pixels in three different groups of wavelengths. This concept has been extended in the hyperspectral and multispectral imaging sensing modalities, where the data to be acquired consists of a three-dimensional datacube that has two spatial dimensions x and y and one spectral dimension λ .

In simple terms, a datacube is a 3-D function f ( x , y , λ ) that can be represented as a stacking of intensities of the scene at different wavelengths. An example datacube is shown in [link] . Each of its entries is called a voxel. We also define a pixel's spectral signature as the stacking of its voxels in the spectral dimension f ( x , y ) = { f ( x , y , λ ) } λ . The spectral signature of a pixel can give a wealth of information about the corresponding point in the scene that is not captured by its color. For example, using spectral signatures, it is possible to identify the type of material observed (for example, vegetation vs. ground vs. water), or its chemical composition.

Datacubes are high-dimensional, since the standard number of pixels present in a digitized image is multiplied by the number of spectral bands desired. However, considerable structure is present in the observed data. The spatial structure common in natural images is also observed in hyperspectral imaging, while each pixel's spectral signature is usually smooth.

Example hyperspectral datacube, with labeled dimensions.

Compressive sensing (CS) architectures for hyperspectral imaging perform lower-dimensional projections that multiplex in the spatial domain, the spectral domain, or both. Below, we detail three example architectures, as well as three possible models to sparsify hyperspectral datacubes.

Compressive hyperspectral imaging architectures

Single pixel hyperspectral camera

The single pixel camera uses a single photodetector to record random projections of the light emanated from the image, with the different random projections being captured in sequence. A single pixel hyperspectral camera requires a light modulating element that is reflective across the wavelengths of interest, as well as a sensor that can record the desired spectral bands separately  [link] . A block diagram is shown in [link] .

The single sensor consists of a single spectrometer that spans the necessary wavelength range, which replaces the photodiode. The spectrometer records the intensity of the light reflected by the modulator in each wavelength. The same digital micromirror device (DMD) provides reflectivity for wavelengths from near infrared to near ultraviolet. Thus, by converting the datacube into a vector sorted by spectral band, the matrix that operates on the data to obtain the CS measurements is represented as

Φ = Φ x , y 0 0 0 Φ x , y 0 0 0 Φ x , y .

This architecture performs multiplexing only in the spatial domain, i.e. dimensions x and y , since there is no mixing of the different spectral bands along the dimension λ .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?