<< Chapter < Page Chapter >> Page >

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see [link] ) produces electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into electrical energy and then into mechanical energy.

A solar-powered aircraft flying over the sea. Solar cells are on the upper surface of the wings, where they are exposed to sunlight.
Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
Energy of various objects and phenomena
Object/phenomenon Energy in joules
Big Bang 10 68 size 12{"10" rSup { size 8{"68"} } } {}
Energy released in a supernova 10 44 size 12{"10" rSup { size 8{"44"} } } {}
Fusion of all the hydrogen in Earth’s oceans 10 34 size 12{"10" rSup { size 8{"34"} } } {}
Annual world energy use 4 × 10 20 size 12{4 times "10" rSup { size 8{"20"} } } {}
Large fusion bomb (9 megaton) 3 . 8 × 10 16 size 12{3 "." 8 times "10" rSup { size 8{"16"} } } {}
1 kg hydrogen (fusion to helium) 6 . 4 × 10 14 size 12{6 "." 4 times "10" rSup { size 8{"14"} } } {}
1 kg uranium (nuclear fission) 8 . 0 × 10 13 size 12{8 "." 0 times "10" rSup { size 8{"13"} } } {}
Hiroshima-size fission bomb (10 kiloton) 4 . 2 × 10 13 size 12{4 "." 2 times "10" rSup { size 8{"13"} } } {}
90,000-ton aircraft carrier at 30 knots 1 . 1 × 10 10 size 12{1 "." 1 times "10" rSup { size 8{"10"} } } {}
1 barrel crude oil 5 . 9 × 10 9 size 12{5 "." 9 times "10" rSup { size 8{9} } } {}
1 ton TNT 4 . 2 × 10 9 size 12{4 "." 2 times "10" rSup { size 8{9} } } {}
1 gallon of gasoline 1 . 2 × 10 8 size 12{1 "." 2 times "10" rSup { size 8{8} } } {}
Daily home electricity use (developed countries) 7 × 10 7 size 12{7 times "10" rSup { size 8{7} } } {}
Daily adult food intake (recommended) 1 . 2 × 10 7 size 12{1 "." 2 times "10" rSup { size 8{7} } } {}
1000-kg car at 90 km/h 3 . 1 × 10 5 size 12{3 "." 1 times "10" rSup { size 8{5} } } {}
1 g fat (9.3 kcal) 3 . 9 × 10 4 size 12{3 "." 9 times "10" rSup { size 8{4} } } {}
ATP hydrolysis reaction 3 . 2 × 10 4 size 12{3 "." 2 times "10" rSup { size 8{4} } } {}
1 g carbohydrate (4.1 kcal) 1 . 7 × 10 4 size 12{1 "." 7 times "10" rSup { size 8{4} } } {}
1 g protein (4.1 kcal) 1 . 7 × 10 4 size 12{1 "." 7 times "10" rSup { size 8{4} } } {}
Tennis ball at 100 km/h 22
Mosquito ( 10 –2 g at 0.5 m/s ) 1 . 3 × 10 6 size 12{1 "." 3 times "10" rSup { size 8{-6} } } {}
Single electron in a TV tube beam 4 . 0 × 10 15 size 12{4 "." 0 times "10" rSup { size 8{-"15"} } } {}
Energy to break one DNA strand 10 19 size 12{"10" rSup { size 8{-"19"} } } {}

Efficiency

Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input. The efficiency     Eff size 12{ ital "Eff"} {} of an energy conversion process is defined as

Efficiency ( Eff ) = useful energy or work output total energy input = W out E in . size 12{"Efficiency " \( ital "Eff" \) = { {"useful energy or work output"} over {"total energy input"} } = { {W rSub { size 8{"out"} } } over {E rSub { size 8{"in"} } } } "." } {}

[link] lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40% of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful) energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.

Efficiency of the human body and mechanical devices
Activity/device Efficiency (%) Representative values
Cycling and climbing 20
Swimming, surface 2
Swimming, submerged 4
Shoveling 3
Weightlifting 9
Steam engine 17
Gasoline engine 30
Diesel engine 35
Nuclear power plant 35
Coal power plant 42
Electric motor 98
Compact fluorescent light 20
Gas heater (residential) 90
Solar cell 10

Phet explorations: masses and springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each spring.

Masses and Springs

Section summary

  • The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
  • When all forms of energy are considered, conservation of energy is written in equation form as KE i + PE i + W nc + OE i = KE f + PE f + OE f size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } +"OE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } +"OE" rSub { size 8{f} } } {} , where OE size 12{"OE"} {} is all other forms of energy besides mechanical energy.
  • Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and thermal energy.
  • Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.
  • The efficiency Eff size 12{ ital "Eff"} {} of a machine or human is defined to be Eff = W out E in size 12{ ital "Eff"= { {W rSub { size 8{"out"} } } over {E rSub { size 8{"in"} } } } } {} , where W out size 12{W rSub { size 8{"out"} } } {} is useful work output and E in size 12{E rSub { size 8{"in"} } } {} is the energy consumed.

Conceptual questions

Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car has, and how they are changed and transferred in this series of events. (See [link] .)

A car coasting downhill, moving over a crest then again moving downhill and finally stopping at a gas station. Each of these positions is labeled with an arrow pointing downward.
A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.

Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

List the energy conversions that occur when riding a bicycle.

Problems&Exercises

Using values from [link] , how many DNA molecules could be broken by the energy carried by a single electron in the beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous x rays. Later model tube TVs had shielding that absorbed x rays before they escaped and exposed viewers.)

4 × 10 4  molecules size 12{4 times "10" rSup { size 8{4} } " molecules"} {}

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.

Equating ΔPE g size 12{Δ"PE" rSub { size 8{g} } } {} and ΔKE size 12{Δ"KE"} {} , we obtain v = 2 gh + v 0 2 = 2 ( 9.80 m /s 2 ) ( 20.0 m ) + ( 15.0 m/s ) 2 = 24.8 m/s size 12{v= sqrt {2 ital "gh"+v rSub { size 8{0} rSup { size 8{2} } } } = sqrt {2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( "20" "." 0" m" \) + \( "15" "." "0 m/s" \) rSup { size 8{2} } } ="24" "." 8" m/s"} {}

If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year’s supply of energy (using data from [link] )? This is not as far-fetched as it may sound—there are thousands of nuclear bombs, and their energy can be trapped in underground explosions and converted to electricity, as natural geothermal energy is.

(a) Use of hydrogen fusion to supply energy is a dream that may be realized in the next century. Fusion would be a relatively clean and almost limitless supply of energy, as can be seen from [link] . To illustrate this, calculate how many years the present energy needs of the world could be supplied by one millionth of the oceans’ hydrogen fusion energy. (b) How does this time compare with historically significant events, such as the duration of stable economic systems?

(a) 25 × 10 6 years size 12{"25" times "10" rSup { size 8{6} } `"years"} {}

(b) This is much, much longer than human time scales.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?

Ask