<< Chapter < Page Chapter >> Page >
This module discusses the existence and covergence of the Fourier Series to show that it can be a very good approximation for all signals. The Dirichlet conditions, which are the sufficient conditions to guarantee existence and convergence of the Fourier series, are also discussed.

Todo

ADD AUTHOR/MAINTAINER/CRHOLDER:
Ricardo Radaelli-Sanchez
MODULE ID:
m10089

Introduction

Before looking at this module, hopefully you have become fully convinced of the fact that any periodic function, f t , can be represented as a sum of complex sinusoids . If you are not, then try looking back at eigen-stuff in a nutshell or eigenfunctions of LTI systems . We have shown that we can represent a signal as the sum of exponentials through the Fourier Series equations below:

f t n c n ω 0 n t
c n 1 T t T 0 f t ω 0 n t
Joseph Fourier insisted that these equations were true, but could not prove it. Lagrange publicly ridiculedFourier, and said that only continuous functions can be represented by [link] (indeed he proved that [link] holds for continuous-time functions). However, we know now thatthe real truth lies in between Fourier and Lagrange's positions.

Understanding the truth

Formulating our question mathematically, let f N t n N N c n ω 0 n t where c n equals the Fourier coefficients of f t (see [link] ).

f N t is a "partial reconstruction" of f t using the first 2 N 1 Fourier coefficients. f N t approximates f t , with the approximation getting better and better as N gets large. Therefore, we can think of the set N N 0 1 f N t as a sequence of functions , each one approximating f t better than the one before.

The question is, does this sequence converge to f t ? Does f N t f t as N ? We will try to answer this question by thinking about convergence in two different ways:

  1. Looking at the energy of the error signal: e N t f t f N t
  2. Looking at N f N t at each point and comparing to f t .

Approach #1

Let e N t be the difference ( i.e. error) between the signal f t and its partial reconstruction f N t

e N t f t f N t
If f t L 2 0 T (finite energy), then the energy of e N t 0 as N is
t T 0 e N t 2 t T 0 f t f N t 2 0
We can prove this equation using Parseval's relation: N t T 0 f t f N t 2 N N n f t n f N t 2 N n n N c n 2 0 where the last equation before zero is the tail sum of theFourier Series, which approaches zero because f t L 2 0 T .Since physical systems respond to energy, the Fourier Series provides an adequate representation for all f t L 2 0 T equaling finite energy over one period.

Approach #2

The fact that e N 0 says nothing about f t and N f N t being equal at a given point. Take the two functions graphed below for example:

Given these two functions, f t and g t , then we can see that for all t , f t g t , but t T 0 f t g t 2 0 From this we can see the following relationships: energy convergence pointwise convergence pointwise convergence convergence in L 2 0 T However, the reverse of the above statement does not hold true.

It turns out that if f t has a discontinuity (as can be seen in figure of g t above) at t 0 , then f t 0 N f N t 0 But as long as f t meets some other fairly mild conditions, then f t N f N t if f t is continuous at t t .

These conditions are known as the Dirichlet Conditions .

Dirichlet conditions

Named after the German mathematician, Peter Dirichlet, the Dirichlet conditions are the sufficient conditions to guarantee existence and energy convergence of the Fourier Series.

The weak dirichlet condition for the fourier series

For the Fourier Series to exist, the Fourier coefficients must be finite. The Weak Dirichlet Condition guarantees this. It essentially says that the integral of the absolute value of the signal must befinite.

The coefficients of the Fourier Series are finite if

Weak dirichlet condition for the fourier series

t 0 T f t

This can be shown from the magnitude of the Fourier Series coefficients:

c n 1 T t 0 T f t ω 0 n t 1 T t 0 T f t ω 0 n t
Remembering our complex exponentials , we know that in the above equation ω 0 n t 1 , which gives us:
c n 1 T t 0 T f t
c n

If we have the function: t 0 t T f t 1 t then you should note that this function fails the above condition because: t 0 T 1 t

The strong dirichlet conditions for the fourier series

For the Fourier Series to exist, the following two conditions must be satisfied (along with the WeakDirichlet Condition):

  1. In one period, f t has only a finite number of minima and maxima.
  2. In one period, f t has only a finite number of discontinuities and each one is finite.
These are what we refer to as the Strong Dirichlet Conditions . In theory we can think of signals that violate these conditions, t for instance. However, it is not possible to create a signal that violates these conditions in a lab. Therefore, anyreal-world signal will have a Fourier representation.

Let us assume we have the following function and equality:

f t N f N t
If f t meets all three conditions of the Strong Dirichlet Conditions, then f τ f τ at every τ at which f t is continuous. And where f t is discontinuous, f t is the average of the values on the right and left.

Discontinuous functions, f t .
Got questions? Get instant answers now!
The functions that fail the strong Dirchlet conditions are pretty pathological - as engineers, we are not too interested inthem.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask