<< Chapter < Page Chapter >> Page >

Calculating magnetic force: earth’s magnetic field on a charged glass rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link] .)

The effects of the Earth’s magnetic field on moving charges. Figure a shows a positive charge with a velocity vector due west, a magnetic field line B oriented due north, and a magnetic force vector F straight down. Figure b shows the right hand facing down, with the fingers pointing north with B, the thumb pointing west with v, and force down away from the hand.
A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.


We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation F = qvB sin θ size 12{F= ital "qvB""sin"θ} {} to find the force.


The magnetic force is

F = qvb sin θ . size 12{F= ital "qvb""sin"θ} {}

We see that sin θ = 1 size 12{"sin"θ=1} {} , since the angle between the velocity and the direction of the field is 90º size 12{"90" rSup { size 8{ circ } } } {} . Entering the other given quantities yields

F = 20 × 10 –9 C 10 m/s 5 × 10 –5 T = 1 × 10 –11 C m/s N C m/s = 1 × 10 –11 N. alignl { stack { size 12{F= left ("20" times "10" rSup { size 8{ - 9 } } `C right ) left ("10"`"m/s" right ) left (5 times "10" rSup { size 8{ - 5} } `T right )} {} #" "=1 times "10" rSup { size 8{ - "11"} } ` left (C cdot "m/s" right ) left ( { {N} over {C cdot "m/s"} } right )=1 times "10" rSup { size 8{ - "11"} } `N "." {} } } {}


This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications .

Section summary

  • Magnetic fields exert a force on a moving charge q , the magnitude of which is
    F = qvB sin θ , size 12{F= ital "qvB""sin"θ} {}
    where θ size 12{θ} {} is the angle between the directions of v size 12{v} {} and B size 12{B} {} .
  • The SI unit for magnetic field strength B size 12{B} {} is the tesla (T), which is related to other units by
    1 T = 1 N C m/s = 1 N A m .
  • The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of v size 12{v} {} , the fingers in the direction of B size 12{B} {} , and a perpendicular to the palm points in the direction of F size 12{F} {} .
  • The force is perpendicular to the plane formed by v and B size 12{B} {} . Since the force is zero if v size 12{v} {} is parallel to B size 12{B} {} , charged particles often follow magnetic field lines rather than cross them.

Conceptual questions

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?


What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link] ?

figure a shows magnetic field line direction symbols with solid circles labeled B out; a velocity vector points down; figure b shows B vectors pointing right and v vector pointing up; figure c shows B in and v to the right; figure d shows B vector pointing right and v vector pointing left; figure e shows B vectors up and v vector into the page; figure f shows B vectors pointing left and v vectors out of the page

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

Repeat [link] for a negative charge.

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in [link] , assuming it moves perpendicular to B ? size 12{B?} {}

Figure a shows the force vector pointing up and B out of the page. Figure b shows the F vector pointing up and the B vector pointing to the right. Figure c shows the F vector pointing to the left and the B vector pointing into the page.

(a) East (right)

(b) Into page

(c) South (down)

Repeat [link] for a positive charge.

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming B size 12{B} {} is perpendicular to v size 12{v} {} ?

Figure a shows a force vector pointing toward the left and a velocity vector pointing up. Figure b shows the force vector pointing into the page and the velocity vector pointing down. Figure c shows the force vector pointing up and the velocity vector pointing to the left.

(a) Into page

(b) West (left)

(c) Out of page

Repeat [link] for a negative charge.

What is the maximum force on an aluminum rod with a 0 . 100 -μC size 12{0 "." "100""-μC"} {} charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

7 . 50 × 10 7 N size 12{7 "." "50" times "10" rSup { size 8{ - 7} } " N"} {} perpendicular to both the magnetic field lines and the velocity

(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0 . 500 -μC size 12{0 "." "500""-μC"} {} charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the 8 . 00 × 10 5 -T size 12{8 "." "00" times "10" rSup { size 8{ - 5} } "-T"} {} magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

(a) A cosmic ray proton moving toward the Earth at 5.00 × 10 7 m/s size 12{5 "." "00" times "10" rSup { size 8{7} } `"m/s"} {} experiences a magnetic force of 1 . 70 × 10 16 N size 12{1 "." "70" times "10" rSup { size 8{ - "16"} } `N} {} . What is the strength of the magnetic field if there is a 45º size 12{"45" rSup { size 8{ circ } } } {} angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

(a) 3 . 01 × 10 5 T size 12{3 "." "01" times "10" rSup { size 8{ - 5} } " T"} {}

(b) This is slightly less then the magnetic field strength of 5 × 10 5 T size 12{5 times "10" rSup { size 8{ - 5} } `T} {} at the surface of the Earth, so it is consistent.

An electron moving at 4 . 00 × 10 3 m/s size 12{4 "." "00" times "10" rSup { size 8{3} } `"m/s"} {} in a 1.25-T magnetic field experiences a magnetic force of 1 . 40 × 10 16 N size 12{1 "." "40" times "10" rSup { size 8{ - "16"} } `N} {} . What angle does the velocity of the electron make with the magnetic field? There are two answers.

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1 . 00 × 10 12 N size 12{1 "." "00" times "10" rSup { size 8{ - "12"} } `N} {} . What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

(a) 6 . 67 × 10 10 C (taking the Earth’s field to be 5 . 00 × 10 5 T size 12{5 "." "00" times "10" rSup { size 8{ - 5} } " T"} {} )

(b) Less than typical static, therefore difficult

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, General physics ii phy2202ca. OpenStax CNX. Jul 05, 2013 Download for free at http://legacy.cnx.org/content/col11538/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General physics ii phy2202ca' conversation and receive update notifications?